
Oracle Rdb7™

Guide to Database Maintenance

Release 7.0

Part No. A41748-1

®

Guide to Database Maintenance

Release 7.0

Part No. A41748-1

Copyright © 1984, 1996, Oracle Corporation. All rights reserved.

This software contains proprietary information of Oracle Corporation; it is provided under
a license agreement containing restrictions on use and disclosure and is also protected by
copyright law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error free.

Restricted Rights Legend Programs delivered subject to the DOD ’ commercial computer
software’ and use, duplication and disclosure of the programs shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
programs delivered subject to the Federal Acquisition Regulations are ’ restricted computer
software’ and use, duplication and disclosure of the programs shall be subject to the
restrictions in FAR 52.227-14, Rights in Data—General, including Alternate III (Jun 1987).
Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The programs are not intended for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It shall be the licensee’s
responsibility to take all appropriate fail-safe, back up, redundancy and other
measures to ensure the safe use of such applications if the programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use
of the programs.

Oracle is a registered trademark of Oracle Corporation. Hot Standby, Oracle
CDD/Administrator, Oracle CDD/Repository, Oracle CODASYL DBMS, Oracle Rally, Oracle
Rdb, Oracle RMU, Oracle RMUwin, Oracle SQL/Services, and Rdb7 are trademarks of
Oracle Corporation.

All other company or product names mentioned are used for identification purposes only,
and may be trademarks of their respective owners.

Contents

Send Us Your Comments . xix

Preface . xxi

Technical Changes and New Features . xxvii

1 Oracle Rdb Database Maintenance

1.1 Database Administrator Responsibilities . 1–1
1.2 Database Management Requirements . 1–2
1.3 Database Maintenance Tools . 1–3
1.4 Database Maintenance Tasks . 1–4
1.5 Database Availability . 1–8
1.5.1 Fault-Tolerant Oracle Rdb Databases . 1–9
1.5.2 Online Backup Operations . 1–9
1.5.3 Online By-Area and By-Page Restore and Recovery Operations, and

By-Area Move Operations . 1–10
1.5.4 Disabling Journaling for Write-Once Storage Areas 1–10
1.5.5 Cluster and Networkwide Automatic Recovery 1–10
1.5.6 Automatic Cleanup . 1–10
1.5.7 Online DBA Activities . 1–11
1.5.8 Offline DBA Activities . 1–14
1.5.9 DBA Activities Requiring a Database Reload Operation 1–15
1.5.10 Quick and Automatic Database Recovery . 1–15
1.5.11 Database Integrity . 1–15
1.5.12 Checking Database Integrity and Evaluating Performance 1–16
1.6 Creating Sample Single-File and Multifile Databases 1–16

iii

2 Monitoring Your Oracle Rdb Databases

2.1 The Oracle Rdb Monitor Process . 2–2
2.1.1 Starting and Stopping the Monitor Process Interactively 2–3
2.1.2 Renaming the Monitor Log File . 2–5
2.1.3 Changing the Monitor Process Priority . 2–7
2.1.4 Reopening the Monitor Log File . 2–7
2.1.5 Reading the Monitor Log File . 2–8
2.2 Listing Active User Information . 2–11
2.3 Displaying Clusterwide User Information . 2–13
2.4 Displaying Database Characteristics . 2–16

3 Security Auditing on OpenVMS

3.1 An Overview of Oracle Rdb Security Auditing . 3–2
3.1.1 Default Security Auditing and Oracle RMU Security Auditing

Commands . 3–2
3.1.2 Use of OpenVMS Security Auditing . 3–3
3.1.3 Monitoring Security Auditing Resources . 3–4
3.2 Security Audit Event Types . 3–4
3.2.1 The Audit Event Type . 3–4
3.2.2 The Daccess Event Type . 3–5
3.2.3 The Protection Event Type . 3–6
3.2.4 The RMU Event Type . 3–6
3.3 Defining Security Events to Be Audited . 3–7
3.3.1 Setting User-Level Information for Security Auditing 3–9
3.3.2 Setting Audit Access to Database Objects (Daccess Auditing) 3–9
3.3.3 Enabling and Disabling Event Information for Security Auditing . . . 3–12
3.3.4 Starting and Stopping Security Auditing and Other Auditing

Characteristics . 3–13
3.4 Reviewing Security Audit Information . 3–16
3.4.1 Interpreting Security Auditing Alarm Information 3–17
3.4.1.1 Interpreting AUDIT Event Alarm Information 3–18
3.4.1.2 Interpreting Daccess Event Alarm Information 3–18
3.4.1.3 Interpreting Protection Event Alarm Information 3–20
3.4.1.4 Interpreting Oracle RMU Event Alarm Information 3–20
3.4.2 Using the RMU Load Audit Command . 3–22
3.4.3 Reviewing Audit Journal Records . 3–24

iv

4 Opening and Closing a Database

4.1 Opening a Database . 4–2
4.1.1 Using the RMU Open Command . 4–3
4.1.2 Attaching to a Database . 4–5
4.2 Closing a Database . 4–7
4.2.1 Closing a Database and Using SQL . 4–9
4.2.2 Using the Noabort Qualifier to Close a Database 4–13

5 Verifying the Integrity of Your Oracle Rdb Database

5.1 Why You Should Verify Your Database . 5–1
5.2 Causes of Database Corruption . 5–2
5.3 What Happens When You Verify Your Database 5–3
5.4 What the Full Verify Operation Checks . 5–4
5.5 What Problems the Full Verify Operation Can Detect 5–7
5.6 Devising a Full Verify Strategy to Detect Problems 5–9
5.7 Interaction of RMU Verify Command Qualifiers 5–12
5.8 Measuring and Improving Verification Performance 5–16
5.9 Examples of Verify Operations on the mf_personnel Sample

Database . 5–17
5.10 Troubleshooting Suspected Problems . 5–21
5.10.1 Using a Checksum Verification to Detect Page Corruption 5–23
5.10.2 Detecting a Data Integrity Corruption . 5–25
5.10.3 Summary of RMU Verify Command Qualifiers for

Troubleshooting . 5–31
5.11 Examples of Database Corruption . 5–33
5.11.1 Line Index Corruption . 5–33
5.11.2 Logical Area Corruption . 5–38
5.11.3 Data Integrity Corruption . 5–43

6 Repairing or Altering a Database

6.1 Using RMU Repair . 6–1
6.2 Using RdbALTER . 6–2
6.2.1 Attaching to a Database . 6–4
6.2.2 Clearing a Corruption Flag . 6–5
6.2.3 Selecting the Area Page for Altering . 6–6
6.2.4 Displaying Page Contents . 6–10
6.2.5 Changing Page Contents . 6–12
6.2.6 Moving Database Files . 6–16
6.2.7 Moving Data . 6–17

v

6.2.8 Using the RMU Alter Command to Remove References to .ruj
Files . 6–22

6.2.9 Clearing an Inconsistent Flag . 6–23
6.2.10 Changing the Radix . 6–25
6.2.11 Verifying Alterations . 6–25
6.2.12 Keeping a Log or an Audit Trail of Alterations 6–25
6.2.13 Completing Transactions . 6–26
6.2.14 Exiting from the RdbALTER Utility . 6–27
6.2.15 Accessing Online Information . 6–27

7 Backing Up Your Database

7.1 Introduction to Database Backup . 7–1
7.2 How Does Oracle RMU Back Up a Database? . 7–2
7.2.1 Oracle RMU Default Backup Operation . 7–3
7.2.2 Oracle RMU Parallel Backup Operation . 7–4
7.3 Invoking the RMU Backup Command . 7–7
7.3.1 What Does Oracle RMU Back Up? . 7–8
7.3.2 Writing the Backup Output File . 7–9
7.3.2.1 Writing Output to Multiple Tapes . 7–10
7.3.2.2 Output to Tape or Disk . 7–11
7.3.2.3 Contents and Size . 7–12
7.3.2.4 Protection . 7–13
7.4 Why Not Use Other Backup Utilities? . 7–13
7.5 Database Backup Strategies . 7–15
7.5.1 Determining How Frequently You Need to Back Up Your

Database . 7–16
7.5.2 Requirements for Using a Full and Complete Backup Operation 7–17
7.5.3 Guidelines for Choosing a Full Versus an Incremental Backup

Operation . 7–18
7.5.4 Guidelines for Choosing a By-Area Backup Operation 7–19
7.5.4.1 Strategies . 7–19
7.5.4.2 Command Qualifiers . 7–22
7.5.5 Guidelines for Performing Online Versus Offline Backup

Operations . 7–22
7.5.6 Guidelines for Choosing Parallel Backup Operations 7–23
7.6 Implementing a Reliable Database Backup Procedure 7–25
7.6.1 Recommendations . 7–25
7.6.2 Sample Backup Procedure . 7–26
7.6.3 Computing Working Set Requirements for OpenVMS 7–29
7.6.4 Checking the Database Page Checksum During a Backup to Disk . . 7–30
7.7 Performing Full and Complete Database Backup Operations 7–32
7.8 Performing an Incremental Database Backup Operation 7–34

vi

7.8.1 Starting an Incremental Backup Operation . 7–35
7.8.2 Optimizing Incremental Backup Performance 7–37
7.8.3 Determining Which Pages Have Changed Since the Last Backup . . . 7–38
7.8.3.1 Looking at Timestamps . 7–39
7.8.3.2 Checking By-Area Backup Timestamps . 7–41
7.8.4 Measuring the Benefits of an Incremental Backup 7–41
7.9 Performing a By-Area Backup Operation . 7–42
7.10 Performing a Parallel Backup Operation . 7–45
7.10.1 Oracle RMU Commands for Parallel Backup Operations 7–46
7.10.2 Starting a Parallel Backup Operation . 7–48
7.10.3 Parallel Backup Plan File . 7–49
7.10.4 What Happens During a Parallel Backup Operation? 7–52
7.10.5 Using Loader Synchronization When Performing a Parallel Backup

Operation . 7–54
7.10.6 Monitoring the Progress of a Parallel Backup Operation 7–55
7.11 Performing Online Backup Operations . 7–56
7.11.1 Avoiding Lock Conflicts . 7–59
7.11.2 Setting Lock Timeout Intervals . 7–60
7.12 Backing Up a Database to a Disk Device . 7–61
7.13 Backing Up a Database to Tape Devices . 7–62
7.13.1 Mounting One or More Tapes on a Single Tape Drive 7–63
7.13.2 Using Multiple Tape Drives . 7–65
7.13.2.1 Using Concurrent Tape Drives Efficiently 7–67
7.13.2.2 Controlling Tape Concurrency with the Master Qualifier 7–68
7.13.2.3 Preloading Tapes Using Load Synchronization 7–69
7.13.2.4 Optimizing Tape Utilization Using a Journal File 7–71
7.13.3 Avoiding Underrun Errors Using Cyclic Redundancy Checks 7–71
7.13.4 Checking Tape Labels . 7–73
7.13.5 Monitoring Error Rates . 7–76
7.14 Displaying Database Backup Information . 7–77

8 Restoring Your Database

8.1 Preparing to Restore a Database . 8–1
8.2 Access Privileges for a Restored Database . 8–2
8.3 Full Database Restore Operations . 8–5
8.4 Incremental Restore Operations . 8–10
8.5 A Sample Restore Procedure . 8–13
8.6 Performing By-Area Restore Operations . 8–14
8.6.1 Performing an Online By-Area Restore Operation on One Storage

Area . 8–18
8.7 Performing By-Page Restore Operations . 8–18
8.8 Restoring Only the Root File from a Database Backup File 8–22

vii

8.9 Restoring a Database Directly from Tape . 8–32
8.9.1 Using a Single Tape Drive . 8–32
8.9.2 Using Multiple Tape Drives . 8–33
8.10 Exceeded Quotas During a Database Restore or Backup Operation 8–36
8.11 Modifying Database Characteristics During a Restore Operation 8–37
8.11.1 Modifying After-Image Journaling Characteristics 8–40
8.11.2 Modifying SPAM Thresholds Values . 8–43
8.11.3 Modifying Blocks per Page . 8–43
8.11.4 Restoring List Storage Areas to WORM Optical or Read/Write Disk

Devices . 8–44
8.12 Performing Additional Tasks During a Restore Operation 8–45
8.12.1 Using an Options File to Restore a Database 8–45
8.12.2 Creating a Duplicate Database During a Restore Operation 8–47
8.12.3 Moving Database Files . 8–49
8.12.4 Moving and Updating Data Dictionary Information 8–50
8.13 Using the SQL EXPORT and IMPORT Statements 8–52

9 After-Image Journaling and Recovery

9.1 Introduction . 9–1
9.1.1 Recommended and Required Usage . 9–2
9.1.2 Information Written to the After-Image Journal File 9–3
9.1.3 Journaling Strategy . 9–4
9.1.4 Displaying After-Image Journaling Performance 9–5
9.2 Enabling After-Image Journaling . 9–5
9.3 Disabling After-Image Journaling . 9–8
9.4 The After-Image Journal (.aij) File . 9–8
9.4.1 Location and Accessibility . 9–9
9.4.2 Extensible and Fixed-Size Journal Files . 9–10
9.4.3 Setting the Allocation Size . 9–12
9.4.4 Setting the Extent Size for an Extensible Journal File 9–14
9.5 Journaling List (WORM) Data . 9–16
9.6 Backing Up After-image Journal Files . 9–19
9.6.1 Backup and Recovery Strategy . 9–19
9.6.2 Disk and Tape Backup Media . 9–20
9.6.3 Reusing Disk and Tape Backup Media . 9–21
9.6.4 Scheduling . 9–22
9.6.5 Transaction Sequence Numbers (TSN) . 9–22
9.6.6 Backup Termination or Failure . 9–25
9.6.7 Backing Up a Single Extensible Journal File 9–25
9.6.8 Backing Up Multiple Fixed-Size Journal Files 9–25
9.6.8.1 Automatic and Manual Backup Operations 9–26
9.6.8.2 File Management . 9–31

viii

9.6.9 Writing a Customized Backup Procedure . 9–32
9.7 Journal Switchover . 9–35
9.7.1 Reasons Why After-Image Journal File Switchover Suspends 9–36
9.7.2 Avoiding Journal File Switchover Suspension 9–36
9.7.3 Determining If Journal File Switchover Is Suspended 9–43
9.7.4 Resuming After-Image Journaling Operations 9–44
9.7.4.1 Manually Performing a Full or By-Sequence After-Image Journal

File Backup . 9–45
9.7.4.2 Adding a New After-Image Journal File 9–46
9.7.5 Recovering the Database . 9–50
9.8 Optimizing After-Image Journaling Performance 9–52
9.8.1 Fast Commit Processing . 9–53
9.8.1.1 Changes to the Journal File . 9–54
9.8.1.2 Effects On the Journal File Backup Operations 9–55
9.8.1.3 Disk Space Requirements for an Extensible Journal File 9–57
9.8.1.4 Effects When Fixed-Size Journal Files Switch Over 9–57
9.8.2 Commit To Journal Option . 9–58
9.9 Recovering Transactions from Journal Files . 9–58
9.9.1 Automatic Recovery for Fixed-Size Journal Files 9–59
9.9.2 Steps for Recovering a Database . 9–59
9.9.3 Manually Recovering Journal Files . 9–68
9.9.4 Optimizing Recovery Performance . 9–73
9.10 What Causes an After-Image Journal File to Be Inaccessible 9–75
9.10.1 Recovering a Lost Extensible Journal File . 9–76
9.10.2 Recovering a Lost Fixed-Size Journal File . 9–77
9.11 Displaying the Contents of a Journal File . 9–77
9.12 Example of Database Backup, Recover, and Restore Journaling

Operations . 9–82

10 Recovery-Unit Journaling and Recovery

10.1 The Recovery-Unit Journal File . 10–1
10.1.1 Directory Location . 10–2
10.1.2 Recovery for Update Transactions . 10–4
10.2 Improving Performance of the Automatic Recovery Process 10–6
10.2.1 Setting the Number of Database Buffers . 10–6
10.2.2 Adjusting the Number of Recovery Buffers . 10–7
10.3 Displaying the Contents of an .ruj File . 10–8

ix

11 Displaying Root Files, Storage Areas, and Snapshot Files

11.1 Using the RMU Dump Command . 11–1
11.2 Data Structures . 11–3
11.2.1 Storage Areas with Uniform Page Format . 11–3
11.2.2 Storage Areas with Mixed Page Format . 11–6
11.3 Displaying Data Storage Files . 11–7
11.4 Displaying Logical Areas . 11–12
11.5 Displaying Snapshot Files . 11–18
11.5.1 Snapshot Page Tail . 11–22

12 Displaying the Contents of Data Storage Pages

12.1 Page Header for a Data Storage Page . 12–3
12.2 Line Index for a Data Storage Page . 12–4
12.3 TSN Index for a Data Storage Page . 12–5
12.4 Locked and Unlocked Free Space for a Data Storage Page 12–6
12.5 Storage Segment Structure for a Data Storage Page 12–8
12.5.1 User-Stored Data Storage Segments . 12–9
12.5.2 List Storage Segments . 12–10
12.5.3 Index Node Storage Segments . 12–18
12.5.3.1 Sorted Index Node Records . 12–20
12.5.3.2 Hashed Index Node Records . 12–25
12.6 Page Tail for a Data Storage Page . 12–35
12.7 Fragmented Storage Records . 12–36

13 Displaying the Contents of SPAM Pages

13.1 Space Management in Single-File and Multifile Databases 13–1
13.2 Space Management for Logical Areas . 13–2
13.3 SPAM Pages in Storage Areas with Uniform Page Format 13–4
13.3.1 Area Bit Maps . 13–8
13.3.2 Area Inventory Pages . 13–10
13.4 SPAM Pages in Storage Areas with Mixed Page Format 13–12
13.5 SPAM Pages in Storage Areas with Mixed Page Format Without a

Placement Index . 13–17

x

A Handling Bugcheck Dumps

A.1 Submitting Problem Reports . A–1
A.2 Troubleshooting Oracle Rdb . A–1
A.2.1 Types of Bugcheck Dumps . A–2
A.2.2 Locations of Bugcheck Dump Files . A–3
A.2.3 Defining the RDM$BUGCHECK_DIR Logical Name A–4
A.3 Understanding Error Messages and Bugcheck Dump Exceptions A–5
A.3.1 The %RDMS-F-TERMINATE Error . A–5
A.3.2 Exceeding Quotas . A–7
A.3.2.1 Disk Quota Exceeded . A–7
A.3.2.2 Process Quota Exceeded . A–8
A.3.3 Using an Invalid dbkey in an Update Transaction A–9
A.4 Reporting a Bugcheck Dump . A–9
A.4.1 Getting a Bugcheck Dump . A–10
A.4.2 Examining a Bugcheck Dump . A–10
A.4.3 Contents of a Bugcheck Dump . A–11

Index

Examples

2–1 Stopping the Monitor Process . 2–3
2–2 Stopping the Monitor Process and Aborting User Processes 2–4
2–3 Starting the Monitor Process . 2–5
2–4 Displaying the Contents of the Monitor Log File 2–5
2–5 Specifying a Different Device and Directory for the Monitor Log

File . 2–6
2–6 Displaying the Contents of the Monitor Log File 2–6
2–7 Stopping and Changing the Monitor Process Priority 2–7
2–8 Reopening the Monitor Log File . 2–7
2–9 Showing Oracle Rdb System Status . 2–8
2–10 Reopening the Monitor Log File and Showing Oracle Rdb System

Status . 2–8
2–11 Reading the Contents of the Monitor Log File 2–9
2–12 Using an Editor to Read the Contents of the Monitor Log File 2–10
2–13 Showing Oracle Rdb System Status . 2–12
2–14 Showing the Current Version of Oracle Rdb . 2–12
2–15 Showing Open Databases and Attached Users 2–13
2–16 Displaying a List of Database Users on a Cluster System 2–14

xi

2–17 Using SYSMAN and the RMU Show Users Command on a Cluster
Configuration . 2–15

4–1 Opening the Database Manually and Showing Users 4–4
4–2 Closing the Database and Showing Users . 4–4
4–3 Changing the Database Opening to Automatic and Showing

Users . 4–6
4–4 Closing Databases and Showing Users . 4–9
4–5 Closing the Database . 4–10
4–6 Opening and Then Closing the Database . 4–11
4–7 Trying to Access a Closing Database . 4–11
4–8 Changing Database Access to Manual Open 4–12
4–9 Closing the Database . 4–12
4–10 Changing Database Access to Automatic Open 4–12
4–11 Closing the Database Through Attrition for a Specific Node 4–13
4–12 Showing Active Users Attached to the Database 4–13
4–13 Showing No Active Users Attached to the Database 4–14
4–14 Closing the Database Through Attrition for All Nodes 4–14
5–1 The Log File from a Full Verify Operation . 5–17
5–2 Verifying the Integrity of the Database . 5–20
5–3 Using Exclusive Access During a Verify Operation 5–20
5–4 Display of the Corrupt Page Table . 5–22
5–5 Verifying Only Database Page Checksums . 5–24
5–6 Verifying the Constraints for a Database . 5–26
5–7 Page Checksum Bad Warning Message and GAPONPAGE

Error Message Returned from a DEPARTMENTS Area Verify
Operation . 5–33

5–8 Online Help File Explanation for the RMU Verify GAPONPAGE
Error Message . 5–34

5–9 Corrupted Page 2 of the DEPARTMENTS Storage Area 5–35
5–10 Uncorrupted Page 2 of the DEPARTMENTS Storage Area 5–37
5–11 Page Checksum Bad Warning Message Returned from a Checksum

Verify Operation of the DEPARTMENTS Logical Area 5–39
5–12 B-Tree Lexical Error Returned from an Index Verify Operation with

No Data Record Check . 5–40
5–13 B-Tree Lexical Error Returned from a Checksum Verify Operation

with a Data Record Check . 5–40
5–14 Corrupted Portion of Page 2 of the DEPARTMENTS Storage

Area . 5–42

xii

5–15 Uncorrupted Portion of Page 2 of the DEPARTMENTS Storage
Area . 5–43

5–16 Page Errors Returned from an Area Verify Operation of the JOBS
Storage Area . 5–44

5–17 Fatal Error Messages Returned from a Constraint Verify
Operation . 5–44

5–18 Tracing the Corruption to a Set of Constraints 5–45
5–19 Corrupted Portion of Page 2 of the JOBS Storage Area 5–46
5–20 Verifying the JOBS Storage Area . 5–47
5–21 Uncorrupted Portion of Page 2 of the JOBS Storage Area 5–47
6–1 RMU Dump Command to Display Contents of the EMPIDS_LOW

Storage Area . 6–8
6–2 Display of Line 1 of Page 2 in Area 2 (EMPIDS_LOW Storage

Area) . 6–10
6–3 Changing Data on Page 2 in the EMPIDS_LOW Storage Area 6–14
6–4 Page Verification Using the RdbALTER Utility Returns a Checksum

Error . 6–14
6–5 Depositing a New Checksum on Page 2 in the EMPIDS_LOW

Storage Area . 6–15
6–6 Checksum Error Returned from a Full Verification 6–18
6–7 Display of Page 3 of the EMP_INFO Storage Area 6–19
6–8 Moving Contents of Line 5 to a Designated Location, Cleaning Up

Extraneous Bytes, and Verifying Storage Pages 6–21
6–9 Committing Changes, Exiting from RdbALTER, and Performing

an RMU Verify operation of the EMP_INFO Storage Area of
mf_personnel . 6–21

7–1 Using Checksum to Verify Database Pages During a Backup
Operation . 7–32

7–2 Starting a Full Database Backup Operation 7–33
7–3 Starting an Incremental Backup Operation . 7–36
7–4 Mounting a Tape Volume and Starting an Incremental Backup

Operation . 7–36
7–5 Determining the Date and Time of the Last Full Backup File 7–40
7–6 Displaying an Area to Determine a Timestamp 7–40
7–7 Starting a Parallel Backup Operation . 7–48
7–8 Parallel Backup Plan File . 7–50
7–9 Setting the Lock Timeout Interval to 300 Seconds 7–61
7–10 Starting an Offline Backup Operation When a User Is Attached to

the Database . 7–61

xiii

7–11 Performing a Full Backup Operation to One Tape 7–63
7–12 Performing a Full Backup Operation to Multiple Tapes Mounted on

a Single Tape Drive . 7–65
7–13 Performing a Full Backup Operation to Multiple Tapes Mounted on

Multiple Tape Drives . 7–66
7–14 Sample Oracle RMU Dump Backup_File Commands 7–77
7–15 Checking the Backup File to See When It Was Created 7–79
8–1 Starting a Full Restore Operation from the DBS_BACKUPS Disk . . 8–6
8–2 Omitting the New_Version Qualifier in a Restore Operation When a

Previous Version of the Database Exists . 8–9
8–3 Using the New_Version Qualifier During a Restore Operation to

Supersede a Previous Version of the Database 8–9
8–4 Deleting an Old Database Version After Fully Restoring and

Recovering the Database . 8–9
8–5 Displaying the Root File Header to Check If the Database Was Ever

Incrementally Restored . 8–10
8–6 Starting an Incremental Restore Operation Following a Full Restore

Operation . 8–10
8–7 Displaying the Root File Header to Check if the Database Was

Restored Incrementally . 8–11
8–8 Error If You Try to Incrementally Restore the Same Database a

Second Time, Using the Same Incremental .rbf File 8–12
8–9 Sample Restore Procedure Followed by Deleting an Old Version of

the Database . 8–13
8–10 Restoring and Recovering the EMP_INFO Storage Area 8–15
8–11 Error If You Try to Restore a Storage Area That Is Not Included in

the Backup File . 8–16
8–12 Error If You Try to Verify the Database . 8–17
8–13 Restoring an Inconsistent Storage Area from a Backup File

Containing That Storage Area . 8–17
8–14 Verifying the Database and Checking the Version Number of the

Storage Area File . 8–17
8–15 Online By-Area Restore Operation of a Read/Write Storage Area . . . 8–18
8–16 Performing a Restore-Only Root Operation and Initializing the TSN

and CSN Values to Zero . 8–28
8–17 Performing a Restore-Only Root Operation and Specifying .rda File,

WORM, and .snp File Parameters . 8–29
8–18 Using a Single Tape Drive for a Full Restore Operation 8–33
8–19 Using Multiple Tape Drives for a Full Restore Operation 8–34

xiv

8–20 Modifying After-Image Journaling Characteristics During a Restore
Operation . 8–40

8–21 Disabling After-Image Journaling During a Restore Operation 8–41
8–22 Changing the After-Image Journal File Specification During a

Restore Operation . 8–41
8–23 Restoring a List Storage Area to a WORM Optical Disk Device from

a Read/Write Disk Device . 8–44
8–24 Restoring a List Storage Area to a Read/Write Disk Device from a

WORM Optical Disk Device . 8–45
8–25 Using an Options File to Restore a Database 8–46
8–26 Using an Options File to Relocate All Database Files to Restore a

Database . 8–47
8–27 Making a Duplicate Copy of the Database and Moving Database

Files to New Locations During a Restore Operation 8–48
8–28 Moving Database Files During a Restore Operation 8–49
8–29 Moving Dictionary Information During a Restore Operation 8–50
8–30 Checking That Metadata Was Moved into the Dictionary After a

Restore Operation . 8–50
8–31 Restoring a Database Without Updating the Data Dictionary 8–51
9–1 Enabling After-Image Journaling Using SQL Statements 9–6
9–2 Enabling After-Image Journaling Using RMU 9–7
9–3 Placement of the After-Image Journal File . 9–10
9–4 Automated Custom Backup Procedure . 9–33
9–5 After-Image Journal File Information Statistics Screen 9–41
9–6 Active User Stall Messages Screen . 9–42
9–7 Restoring and Recovering a Lost Storage Area 9–61
9–8 Recovering a Database and Specifying the Device and File

Specification of Journal File . 9–67
9–9 Detecting Index Errors in an Inconsistent Database 9–68
9–10 Performing a Journal File Switch Increments the After-Image

Journal Sequence Number . 9–71
9–11 Displaying the AIJ Sequence Number . 9–72
9–12 Displaying the Contents of an Empty Journal File 9–78
9–13 Displaying the Contents of a Journal File . 9–79
9–14 Using Journal Files and Backup Files for a Full Database Backup

Operation . 9–82
9–15 Restoring, Verifying, and Recovering a Database 9–85

xv

10–1 Changing the Number of Recovery Buffers Allocated to the Recovery
Process . 10–8

10–2 Displaying the Contents of an Empty Recovery-Unit Journal File . . . 10–9
10–3 Displaying the Contents of a Recovery-Unit Journal File 10–10
11–1 Common Display Format for Logical Areas, Snapshot Files, and

Database Pages . 11–2
11–2 Storage Areas of the mf_personnel Database 11–8
11–3 EMP_INFO Storage Area . 11–10
11–4 CANDIDATES Logical Area . 11–13
11–5 Commands to Display the First Page of All Logical Areas 11–15
11–6 Command to Display Area IDs of All Logical Areas 11–15
11–7 Logical Area RDB$AIP Listing Logical Area Numbers and Names of

the mf_personnel Database . 11–16
11–8 Attempts to Display the Contents of the EMPLOYEES Logical

Area . 11–17
11–9 First Page of Selected Snapshot Files . 11–18
11–10 Displaying Selected Pages of the EMPIDS_LOW Snapshot File to an

Output File . 11–22
11–11 Snapshot File Showing the Page Tail . 11–23
12–1 Page Header for a Data Storage Page . 12–3
12–2 Line Index for a Data Storage Page . 12–4
12–3 TSN Index for a Data Storage Page . 12–5
12–4 Locked and Unlocked Free Space for a Data Storage Page 12–7
12–5 User-Stored Data Storage Segment . 12–9
12–6 Primary and Secondary Chained Segment . 12–13
12–7 Primary Indexed Segment . 12–14
12–8 Secondary Indexed Segment . 12–16
12–9 Simple Data Segment . 12–17
12–10 Data Segments Referenced by Primary and Secondary Indexed

Segments . 12–18
12–11 Sorted Index Node Segment for a Non-Ranked Sorted Index 12–21
12–12 Sorted Index Node Segment for a Ranked Sorted Index 12–24
12–13 Storage Area Page with Mixed Page Format Containing Hashed

Index Node and Data Storage Records . 12–26
12–14 Page Tail for a Data Storage Page in a Mixed Storage Area 12–35
12–15 Page Tail for a Data Storage Page in a Uniform Storage Area 12–36
12–16 Fragmented Storage Record . 12–37
13–1 SPAM Page for a Storage Area with Uniform Page Format 13–6

xvi

13–2 ABM Page . 13–9
13–3 An Area Inventory Page . 13–10
13–4 SPAM Page for a Storage Area with Mixed Page Format 13–12
13–5 Storage Area SPAM Threshold Parameters for Specific Storage

Areas . 13–18
A–1 Using the SEARCH Command to Find the Exception in an Oracle

Rdb Run-Time Services Bugcheck Dump File A–3
A–2 Error Message for an Oracle Rdb Run-Time Services Bugcheck

Dump . A–3
A–3 Error Message for an RMU Bugcheck Dump A–4
A–4 Defining the RDM$BUGCHECK_DIR Logical Name A–5
A–5 Exception Reports Extracted from RDMDBRBUG.DMP Files A–6
A–6 Exception Generated from Exceeding the Disk Quota A–7
A–7 Batch Command Procedure to Create Four Work Files, Each on a

Separate Disk Volume . A–8
A–8 Exception Generated from Exceeding the Paging File Quota

(PGFLQUOTA) . A–9
A–9 Using an OpenVMS Text Editor to Read the Bugcheck Dump

File . A–10

Figures

7–1 Backup and Restore Operations . 7–1
7–2 Multithreaded Oracle RMU Backup (Single Process) 7–3
7–3 Multithreaded Oracle RMU Backup Using Multiple Parallel

Processes . 7–6
9–1 Restoring Data from the After-Image Journal Files 9–2
9–2 When to Back Up the After-Image Journal File 9–23
9–3 Checkpoint Processing and the Journal File Backup Procedure 9–56
11–1 Storage Area with Uniform Page Format . 11–4
11–2 Mapping AIP and ABM Data Structures to SPAM and Data

Pages . 11–5
11–3 Storage Area with Mixed Page Format . 11–6
12–1 Data Storage Page Components in a Mixed Page Format Storage

Area . 12–2
12–2 Adding a New Row to the Database . 12–31
12–3 Oracle Rdb Page Structure with the System Record 12–33
12–4 Pointer to Another Page . 12–34

xvii

13–1 SPAM Intervals in a Mixed Storage Area Using Defaults 13–15
13–2 SPAM Page Distribution with a Larger Interval 13–16

Tables

1–1 Database Administrator Responsibilities . 1–1
1–2 Management Requirements . 1–2
1–3 Database Management Tools . 1–3
1–4 Database Maintenance Activities . 1–4
3–1 Oracle RMU Functions That Are Not Audited 3–6
3–2 Daccess Privileges for Database Objects . 3–10
3–3 Columns for Storing Security Audit Journal Records 3–22
5–1 Parameters for the Generated Command File 5–12
7–1 Types of Oracle RMU Backup Operations . 7–9
7–2 Files, Areas, and Pages That Oracle RMU Backs Up 7–12
7–3 Comparison of Oracle RMU Backup and Operating System Backup

Utilities . 7–14
7–4 Determining the Frequency of Database Backups 7–16
7–5 Determining When to Use a Full or an Incremental Backup

Operation . 7–18
7–6 Strategies for Backup File Management . 7–20
7–7 Comparison of Online and Offline Backup . 7–23
7–8 Recommendations for Safeguarding Database Integrity 7–26
7–9 Sample Full and Complete, and Incremental Backup Procedures . . . 7–27
7–10 Calculating Working Set Size . 7–29
7–11 Recommended OpenVMS Process Quotas . 7–30
7–12 Qualifiers for By-Area Backup Operations . 7–43
7–13 Preparing for Parallel Backup Operations . 7–45
7–14 Commands and Qualifiers for a Parallel Backup Operation 7–46
7–15 Starting an Online Backup Operation . 7–57
7–16 Implicit and Explicit Tape Labeling . 7–70
7–17 Oracle RMU Procedure to Check Tape Labels 7–74
9–1 Comparison of Single Versus Multiple After-Image Journal Files . . . 9–11
10–1 Default Location for Recovery-Unit Journal Files 10–2
12–1 Components of a Data Storage Page . 12–1
13–1 SPAM Entry for a Data Page . 13–19

xviii

Send Us Your Comments

Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

You can send comments to us in the following ways:

• Electronic mail — nedc_doc@us.oracle.com

• FAX — 603-897-3334 Attn: Oracle Rdb Documentation

• Postal service

Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you like, you can use the following questionnaire to give us feedback. (Edit
the online release notes file, extract a copy of this questionnaire, and send it to
us.)

Name Title

Company Department

Mailing Address Telephone Number

Book Title Version Number

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

xix

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available).

xx

Preface

Oracle Rdb7 Guide to Database Maintenance is one of a set of Oracle Rdb
documents that describe database administrator responsibilities and tools for
Oracle Rdb databases running on OpenVMS and Digital UNIX.

Purpose of This Manual
The purpose of this manual is to explain how to manage an Oracle Rdb
database to perform operations such as:

• Monitoring database activity

• Performing security auditing

• Opening and closing a database

• Verifying and altering a database

• Backing up, restoring, and recovering a database

• Journaling database activity

• Displaying database pages

• Handling bugcheck dumps

Intended Audience
This manual addresses database administrators responsible for routine
management with the goal of keeping Oracle Rdb databases available to run
the company’s business applications.

To use this manual most effectively, you need to be familiar with basic
database management concepts and terminology, and Oracle RMU, the Oracle
Rdb database management utility.

xxi

Operating System Information
Oracle Rdb is supported on OpenVMS VAX, OpenVMS Alpha, and
Digital UNIX operating systems.

The Oracle Rdb7 Installation and Configuration Guide and Oracle Rdb7
Release Notes provide information about the versions of the supported
operating systems and optional Oracle software compatible with this version of
Oracle Rdb.

For information on the compatibility of other software products with this
version of Oracle Rdb, contact your Oracle Rdb representative.

Structure
This manual contains 13 chapters, 1 appendix, and an index.

Chapter 1 Introduces database maintenance tasks.

Chapter 2 Describes how to monitor your database.

Chapter 3 Describes how to establish security auditing. This chapter also
explains how to monitor and collect security audit records for
many specific operations performed on a database, or how to
send alarms to security operators’ terminals, alerting operators
to significant events as they happen.

Chapter 4 Describes how to open and close a database and the process of
attaching to and detaching from a database.

Chapter 5 Describes how to perform regular verify operations and how to
troubleshoot and solve problems detected by verify operations.

Chapter 6 Describes how to repair a database if it is corrupt.

Chapter 7 Describes how to perform backup operations.

Chapter 8 Describes how to restore your database.

Chapter 9 Describes after-image journaling and recovery techniques,
including information about fixed-size journal files and journal
switchover.

Chapter 10 Describes recovery-unit journaling and automatic recovery of .ruj
files and explains how to improve recovery performance.

Chapter 11 Explains how to show the internal representation of a storage
area and how to interpret what you see.

Chapter 12 Explains the internal representation of a storage page and how
to interpret what you see.

Chapter 13 Explains the internal representation of a database SPAM page
and how to interpret what you see.

xxii

Appendix A Describes how to handle an Oracle Rdb bugcheck dump.

Online Help
Online help can be invoked from the command line as well as through
interactive Oracle Rdb utilities. Refer to the Oracle Rdb7 Release Notes for
information about accessing online help.

Related Manuals
This manual, together with the following manuals, describe all facets of Oracle
Rdb database administration:

• Oracle RMU Reference Manual

• Oracle Rdb7 SQL Reference Manual

• Oracle Rdb7 Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

Also, refer to the Oracle Rdb7 Release Notes for release notes and other
information specific to this release of Oracle Rdb.

For businesses that require uninterrupted (24x365) database services, you
should refer to Oracle Rdb7 and Oracle CODASYL DBMS: Guide to Hot
Standby Databases. This manual describes the optional Oracle Rdb capability
to automatically duplicate your master Oracle Rdb database with a redundant
database located at a geographically remote site.

Conventions
In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS and Oracle Rdb
for Digital UNIX software. Version 7.0 of Oracle Rdb software is often referred
to as V7.0.

The SQL interface to Oracle Rdb is referred to as SQL. This interface is the
Oracle Rdb implementation of the SQL standard ANSI X3.135-1992, ISO
9075:1992, commonly referred to as the ANSI/ISO SQL standard or SQL92.

Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

OpenVMS means both the OpenVMS Alpha and OpenVMS VAX operating
system.

This manual uses icons to identify information that is specific to an operating
system or platform. Where material pertains to more than one platform or
operating system, combination icons or generic icons are used. For example:

xxiii

Digital UNIX This icon denotes the beginning of information specific to the
Digital UNIX operating system.

OpenVMS
VAX

OpenVMS
Alpha

This icon combination denotes the beginning of information
specific to both the OpenVMS VAX and OpenVMS Alpha
operating systems.

The diamond symbol denotes the end of a section of
information specific to an operating system or platform.

Discussions in this manual that refer to VMScluster environments apply to
both VAXcluster systems that include only VAX nodes and VMScluster systems
that include at least one Alpha node, unless indicated otherwise.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted in order to focus full attention on the statements or commands
themselves.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

boldface
text

Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

xxiv

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language prompt
on OpenVMS systems and the Bourne shell prompt on Digital UNIX
systems.

The number sign represents the Digital UNIX default superuser
prompt, and is also used as a comment character in the Bourne shell.

% The percent sign represents the Digital UNIX default user prompt.

> In examples, when the right angle bracket appears at the beginning
of a continued line, it represents the Bourne shell command line
continuation prompt. Otherwise, it represents a redirection operation.

UPPERCASE

lowercase

The Digital UNIX operating system differentiates between lowercase
and uppercase characters. Examples, syntax descriptions, function
definitions, and literal strings that appear in text must be typed exactly
as shown.

filesystem In text, this typeface indicates the exact name of a command, routine,
partition, path name, directory, or file. This typeface is also used in
interactive examples and other screen displays.

xxv

Technical Changes and New Features

This section lists some of the new and updated portions of this manual since it
was last released with Version 6.0 of Oracle Rdb.

The following changes have been made to this manual:

• The overview information in Chapter 1 has been rewritten to focus on the
availability features of Oracle Rdb.

• Chapter 7 about database backup operations has been rewritten to provide
an overview of the default backup operation and the new parallel backup
operation. The chapter also offers suggestions for backup strategies, a
sample backup procedure, tape checking procedures, and calculations for
determining the appropriate working set size for OpenVMS system backup
operations. Also, Chapter 7 contains new information about cluster and
multiple-volume backup operations.

• Chapter 9 about after-image journaling has been rewritten to provide a
more comprehensive look at after-image journaling as a part of your total
restore and recovery procedure. The chapter contains new information
about the use of multiple fixed-size journal files and includes information
about how Oracle Rdb automatically switches to a new journal file when
the current journal file becomes full. The chapter describes how you can
set up an emergency after-image journal file to avoid journaling suspension.

• Chapter 10 about recovery-unit journaling has been rewritten to provide
information about how Oracle Rdb creates the .ruj file and the default
location.

• The chapter titled Understanding Internal Database File Structures has
been split into three chapters:

Chapter 11 explains the internal representation of database storage
areas.

Chapter 12 explains the internal representation of database storage
pages.

xxvii

Chapter 13 explains the internal representation of database SPAM
pages.

• Section 13.3 provides new calculations for determining the actual number
of pages in the SPAM interval.

• Chapter 7 describes the following qualifiers that are new or changed for
the RMU Backup command:

RMU Backup Parallel

RMU Backup Plan

RMU Backup Loader_Synchronization

RMU Backup Media_Loader

RMU Backup Quiet_Point

• Section 7.8.2 describes how the Noscan_Optimization and Scan_
Optimization qualifiers are ignored during online, full backup operations.

Oracle RMU returns an information message indicating that the [No]Scan_
Optimization qualifier is ignored when you also include the Online qualifier
for a full backup operation. The current recording state at the time you
enter the Backup command remains in effect.

• Section 8.2 shows you how to provide sufficient Oracle RMU privileges
to a restored database. Instructions and examples show how to provide
privileges to a restored database owned by a resource identifier.

• Chapter 11 and Chapter 12 provide information about how the uniform
page format contains many records from only one table or one index. The
exception is for indexes created in the RDB$SYSTEM area. In this area,
a uniform format page may contain records (for example, nodes) from
multiple indexes if they are defined for the same table.

• Chapter 12 explains new on-disk structure for B-tree indexes.

New for Version 7.0, you can specify that Oracle Rdb use a new B-tree
on-disk structure. The new structure allows better optimization of queries,
particularly queries involving range retrievals. Oracle Rdb is able to make
better estimates of cardinality, reducing disk I/O and lock contention.

Chapter 12 explains ranked and non-ranked sorted index node structures
and the output from the RMU Dump command that displays sorted index
node segments.

• Section 10.1 discusses ways to improve the performance of the automatic
recovery processes and the new default WSEXTENT quota for the DBR
process of 8192 pages.

xxviii

If a node failure causes Oracle Rdb to initiate the DBR process on a node
other than the one where the process is failing, the DBR process cannot
access the working set extent (WSEXTENT) quota from the failing process.
This is because the process (on the failing node) no longer exists. Because
the DBR process is unable to inherit the failing process’ WSEXTENT
value, it defaults to 8192 pages.

Refer also to the Oracle Rdb7 Release Notes for additional information about
new features, technical changes, current limitations, and restrictions.

xxix

1
Oracle Rdb Database Maintenance

The need for efficient database management has become more urgent as
systems grow in physical size, capacity, and complexity. Most businesses
store critical data in database management systems. These databases often
are shared among multiple office locations and used by large numbers of
people performing varied tasks. Consequently, the businesses require that the
database is functioning properly and is available for use at all times.

This chapter summarizes database management techniques and tools that help
the database administrator (DBA) properly manage all the requirements of an
Oracle Rdb database.

1.1 Database Administrator Responsibilities
Database administration involves planning, designing, implementing,
maintaining, and tuning one or more databases.

Table 1–1 lists broad categories of DBA responsibilities and indicates the
Oracle Rdb manual that provides information about the topic.

Table 1–1 Database Administrator Responsibilities

DBA Task Involves... Reference

Design or
reorganize
the database

Initiating a complete analysis of the business
needs and data requirements in order to
achieve an appropriate database design and
definition. Reorganizing or changing mature
databases to reflect changing business needs.

Oracle Rdb7 Guide to
Database Design and
Definition

Implement the
database

Fine tuning the definition of the database and
its entities, setting up security mechanisms,
setting up a data repository, and loading data.

Oracle Rdb7 Guide to
Database Design and
Definition

(continued on next page)

Oracle Rdb Database Maintenance 1–1

Table 1–1 (Cont.) Database Administrator Responsibilities

DBA Task Involves... Reference

Maintain the
database

Opening and closing a database, data backup
and restoration, security auditing, and
journaling: tasks that ensure the database
availability, integrity, security, and scalability
required to meet your business needs.

Oracle Rdb7 Guide to
Database Maintenance

Tune the
database

Collecting data usage statistics, testing
performance, improving database access,
and improving applications to attain optimal
performance.

Oracle Rdb7 Guide to
Database Performance and
Tuning

Distribute
or move the
database

Distributing applications across a network
distributed environment, or moving a
database from a development environment
to a production environment.

Oracle Rdb7 Guide to
Distributed Transactions
and Oracle Rdb7 Guide to
Database Performance and
Tuning

Provide a
fault-tolerant
database

Physically replicating a database, applica-
tions, and environment at a geographically
remote standby site.

Oracle Rdb7 and Oracle
CODASYL DBMS: Guide to
Hot Standby Databases

This manual concentrates on the database administrators job regarding the
ongoing management of the database.

1.2 Database Management Requirements
Your overall goal as a DBA is to maintain and protect the integrity of the data
and the availability of the database. Database management requirements are
shown in Table 1–2.

Table 1–2 Management Requirements

Requirement Description

Analysis Collect and display information about database users, data, and characteristics.

Recovery Return the database to a correct, consistent state after a hardware or software
failure, or human error.

Integrity Ensure that data is correct. The database must not store data that is
inconsistent with the rules of the business. Once stored in the database,
data must persist. Partially entered transactions are rolled back.

Security Protect data from inadvertent or deliberate destruction or viewing by an
unauthorized person.

(continued on next page)

1–2 Oracle Rdb Database Maintenance

Table 1–2 (Cont.) Management Requirements

Requirement Description

Concurrency Ensure that multiple users and transactions can access the database
concurrently and see a consistent view of the data.

1.3 Database Maintenance Tools
Once a database is installed and in use, it must be monitored and maintained.
You maintain an Oracle Rdb database using a combination of data
manipulation languages (for example, SQL) and Oracle RMU, the Oracle
Rdb database management utility.

Table 1–3 lists general categories of database maintenance tasks, and
the Oracle Rdb utilities and tools that help you perform the maintenance
operations.

Table 1–3 Database Management Tools

Operation Utility Purpose

Analyze RMU Analyze Collects and displays information about how data is
being stored and about the index structure

RMU Show Displays information about the Oracle Rdb database
running on the node from which you issue the Show
command

RMU Verify Checks internal database structures for consistency
and integrity

RMU Dump Displays information about the contents, structure,
and users of the database

Control RMU Open Manually opens the database for normal user access

RMU Close Manually closes the database for maintenance and
restricted access

RMU Monitor Starts or stops the Oracle Rdb monitor process

RMU Set Allows you to control AIJ login, audit login, corrupt
pages, and privileges

Integrity RMU Backup Creates full or partial (incremental) backup copy of
the database or after-image journal file

(continued on next page)

Oracle Rdb Database Maintenance 1–3

Table 1–3 (Cont.) Database Management Tools

Operation Utility Purpose

RMU Restore Restores the database to its state at the beginning of
the execution of RMU Backup

RMU Optimize Recovers the database to the last committed
transaction

RMU Resolve Eliminates unneeded and duplicate journal records
and orders the journal records

RMU Server After_
Journal

Commits or rolls back any unresolved distributed
transactions in the database, and manually starts or
stops the AIJ log server (ALS) process for the specified
database

Load RMU Load Loads data from a file into an Oracle Rdb table

Unload RMU Unload Unloads data from a specific table or view into a file

Restructure
or Update

SQL Import and Export Assists with major restructuring or migration of a
database

RMU Convert Upgrades an Oracle Rdb database from a previous
version to the current version

RMU Extract Reads and decodes Oracle Rdb metadata and
reconstructs equivalent statements in RDO or SQL

Replication RMU Copy_Database Manually replicates a database

Replication RMU Replicate Automatically replicates a database

1.4 Database Maintenance Tasks
Table 1–4 lists database maintenance tasks according to when they should
be performed (daily, weekly, monthly, and so forth). Table 1–4 also shows
the Oracle Rdb utilities and tools that help you perform the maintenance
operations.

Table 1–4 Database Maintenance Activities

Daily Maintenance Method

Perform incremental backup operation of database RMU Backup/Incremental

Attach to database, map root file, map OpenVMS global
sections or Digital UNIX shared memory partitions

RMU Open

(continued on next page)

1–4 Oracle Rdb Database Maintenance

Table 1–4 (Cont.) Database Maintenance Activities

Daily Maintenance Method

Detach from database, unmap OpenVMS global sections
or Digital UNIX shared memory partitions, abort user
processes

RMU Close

Report on database activity RMU Show
or on OpenVMS systems you can type
SYS$SYSTEM:RDMMON411.LOG

Perform incremental verification of database integrity RMU Verify Incremental

Weekly Maintenance Method

Perform full backup operation of database RMU Backup

Report on database space usage RMU Analyze

Display performance indicators interactively RMU Show Statistics

Perform full verification of database integrity prior to an
RMU Backup operation

RMU Verify All

Database Startup Method

Create monitor process, start monitor log RMU Monitor Start
(Use at system startup)

Attach to database, map root file, map OpenVMS global
sections or Digital UNIX shared memory partitions

RMU Open
(Use after restart)

Database Shutdown Method

Detach from database, unmap OpenVMS global sections
or Digital UNIX shared memory partitions, abort user
processes

RMU Close
(Use before maintenance operations)

Terminate the monitor process, let users currently
attached finish, and prevent new users from attaching
to the database

RMU Monitor Stop
(Use at system shutdown)

(continued on next page)

Oracle Rdb Database Maintenance 1–5

Table 1–4 (Cont.) Database Maintenance Activities

Troubleshooting Method

Restore database RMU Restore
(Use after unrecoverable loss of
database)

Restore root file RMU Restore Only_Root
(Use after unrecoverable loss of root
file)

Roll database forward RMU Recover
(Use after RMU Restore operation)

Report on database integrity after a system failure
or on database integrity of a restored database after the
RMU Restore operation

RMU Verify
(Use after system failure or after
using the RMU Restore operation)

Patch the database if the corruption is minor in scope RMU Alter
(Use after verification reports a
corruption problem)

Report on database space usage RMU Analyze
(Use after noticing performance
problems)

Display performance indicators interactively RMU Show Statistics
(Use after noticing performance
problems)

Display contents of database, storage area, and .SNP
files, including root information

RMU Dump
(Use after noticing performance
problems)

Rebuild SPAM and ABM pages, fix page tail problems,
create and initialize new snapshot (.snp) files for those
that are missing

RMU Repair
(Use after noticing SPAM page
corruption, area bit map (ABM)
page or page tail errors, or missing
.snp files)

Set pages corrupt; set pages consistent RMU Set Corrupt_Pages
(Use after verification reports a
corruption problem)

Display corrupt pages by disk, area, and page RMU Show Corrupt_Pages
(Use after verification reports a
corruption problem, corrupt pages
have been previously set, or a display
of the header file indicates corrupt
pages exist)

(continued on next page)

1–6 Oracle Rdb Database Maintenance

Table 1–4 (Cont.) Database Maintenance Activities

General RMU Maintenance Method

Create a new version of the monitor log file RMU Monitor Reopen_Log

Display contents of database files RMU Dump

Report on current database users RMU Show Users

Report on users of all databases RMU Show System

Copy a table or view into a BRP format or RMS file RMU Unload

Copy data unloaded using the RMU Unload command
into a table

RMU Load

Convert an existing database file to a format compatible
with a new version of Oracle Rdb

RMU Convert

Create a backup copy of the database prior to conversion
and a backup copy of the database immediately following
a successful conversion and verification

RMU Backup

Create a backup file of the database .aij file RMU Backup After_Journal

Improve the performance of rolling forward .aij files RMU Optimize After_Journal

Update the cardinality in the metadata when the storage
area has been set to read-only and when cardinality
values stored in the system tables no longer accurately
reflect the characteristic of the data stored in the
database

RMU Collect Optimizer Statistics

Copy a database on line RMU Copy_Database Online

Move storage areas of a database when the database is
off line

RMU Move_Area

Enable Oracle Rdb security auditing RMU Set Audit

Display the set of Oracle Rdb security auditing
characteristics established with the RMU Set Audit
command

RMU Show Audit

Enable Oracle Rdb to load security audit records from the
security audit journal into a table in your database

RMU Load Audit

Enable modification of the root file access control list
(ACL) for a database

RMU Set Privilege

(continued on next page)

Oracle Rdb Database Maintenance 1–7

Table 1–4 (Cont.) Database Maintenance Activities

General RMU Maintenance Method

Decode system table information and reconstruct
equivalent commands in the selected interface (SQL
or RDO) for the definition of that database

RMU Extract

Force all active database processes on all nodes to
immediately perform a checkpoint operation

RMU Checkpoint

Enable setting of AIJ attributes RMU Set After_Journal

Display AIJ configuration information and optionally
initialize AIJ symbols

RMU Show After_Journal

General SQL Maintenance Method

Modify schema and database characteristics SQL ALTER DATABASE

Copy a database into an intermediate, compressed
interchange (.RBR) file format for migration or
restructuring

SQL EXPORT DATABASE

Copy the contents of the .RBR files created with the
EXPORT statement into a database to complete database
migration and restructuring

SQL IMPORT DATABASE

Copy a database into an intermediate, compressed .RBR
file format for migration or restructuring, but contain
only metadata and no data

SQL EXPORT DATABASE
NO DATA

Copy the contents of the .RBR files (with data) created
with the EXPORT statement into a database to complete
database migration and restructuring, but contain only
metadata and no data

SQL IMPORT DATABASE
NO DATA

Update database access control by adding new database
users or modifying user privileges

SQL GRANT

Update database access control by deleting database
users or modifying user privileges

SQL REVOKE

Reorganize the relation records or table rows within one
or more storage areas according to partitions specified

SQL ALTER STORAGE MAP
REORGANIZE

1.5 Database Availability
Availability is the amount of time that a computing system provides application
service to its users. Making the database continuously available to users and
applications is a primary goal of database administration.

1–8 Oracle Rdb Database Maintenance

The availability of a database management system can be compromised not
only by unscheduled downtime such as hardware or software failures, but also
by routine maintenance tasks such as backup operations, definition changes,
and file or data restructuring.

Some database management systems are restricted by their degree of fault
tolerance. Oracle Rdb has few restrictions and provides a high degree of
availability. The following sections describe the availability features of
Oracle Rdb and how they minimize the impact of scheduled and unscheduled
downtime on database access.

1.5.1 Fault-Tolerant Oracle Rdb Databases
Oracle Rdb provides fault tolerance by allowing you to physically duplicate a
database, applications, and environment at a geographically remote standby
site to provide fault tolerance. In the event of a failure, Rdb continues
to provide the required services by transparently failing over users and
applications to the replicated database.

You use Oracle RMU to replicate a database at a remote site and automate
after-image journal backup and rollforward operations to provide a
nonintrusive, high-performance solution to data availability. See the Oracle
Rdb7 and Oracle CODASYL DBMS: Guide to Hot Standby Databases manual
for complete information.

1.5.2 Online Backup Operations
Oracle Rdb supports online backup operations that allow users access to the
database during that operation. The online backup operation uses snapshot
(.snp) files to achieve a high degree of database availability. Oracle Rdb also
supports fast online or offline incremental backup operations, which reduce
backup time and ease maintenance by reducing the amount of data that needs
to be backed up. Fast incremental backup operations use memory bitmaps for
each storage area’s space area management (SPAM) pages in the global section
or shared memory partition of each node.

Oracle Rdb can provide the fastest and most reliable backup capabilities of
any database system on Alpha and VAX computers. Oracle Rdb can back up
multiple storage areas at the same time, concurrently running several tape
drives through its support of the multithreaded backup operation.

Note

The number of tape drives that can be used concurrently is limited only
by the system’s I/O capacity.

Oracle Rdb Database Maintenance 1–9

Refer to Chapter 7 for more information about backing up your database.

1.5.3 Online By-Area and By-Page Restore and Recovery Operations, and
By-Area Move Operations

Oracle Rdb supports online by-area and by-page restore and recovery
operations as well as online move storage area operations. If a storage
area or pages within a storage area need to be restored and recovered, or
if a storage area needs to be moved for some reason, the database need not
be shut down and made inaccessible to users during these maintenance
operations. In fact, only pages within an area or areas that are being restored
and recovered become inaccessible until the restore and recover operation
completes. Similarly, only areas that are moved are inaccessible until the move
operation completes. Once the area or pages within an area are successfully
restored and recovered, or the area is moved, it is accessible to users again.
See Chapter 8, Chapter 9, and the Oracle Rdb7 Guide to Database Design and
Definition for more information.

1.5.4 Disabling Journaling for Write-Once Storage Areas
Multimedia applications can store very large amounts of list data (images,
documents, video, voice, and so forth). If after-image journaling is enabled,
sufficient storage space must be available to handle the large .aij files that can
result. Also, additional tape media may be required to back up these large
.aij files. For some applications, this may be impractical. An alternative is to
disable journaling of list data stored in write-once storage areas on write-once,
read-many (WORM) devices while continuing to journal all other database
activity.

1.5.5 Cluster and Networkwide Automatic Recovery
Oracle Rdb has supported fault tolerance in a cluster environment since V2.0
(1985) of Oracle Rdb, so if a CPU goes off line or an HSC node fails, Oracle Rdb
automatically handles recovery and rollback. Refer to the Oracle Rdb7 Guide
to Database Performance and Tuning for more information on this process.

1.5.6 Automatic Cleanup
The following online activities are automatically performed by the database
while users are attached to it:

• Use of freed space in database storage area (.rda) files and snapshot (.snp)
files

• Creation, extension, or deletion of a user’s recovery-unit journal (.ruj) file,
as required

• Extension of any .rda files, as required

1–10 Oracle Rdb Database Maintenance

• Extension of an .aij file, as required

• Recovery of any aborted transactions

• Change in lock granularity of a user’s transaction, as required

• Detection of deadlocks

• Updates to approximate cardinality of tables and indexes, as appropriate

• Group commit operations and after-image journal data for efficiency

See Chapter 9, Chapter 10, the Oracle Rdb7 Guide to Database Design and
Definition, and the Oracle Rdb7 Guide to Database Performance and Tuning
for more information.

1.5.7 Online DBA Activities
As a DBA, you can perform the following activities on line while users are
attached to the database:

• Perform online backup operations of the database, either full or
incremental backup operations.

• Perform online restore operations of storage areas.

• Perform online recovery operations of restored storage areas.

• Perform online spooling of the .aij file (that is, truncate and back up
contents of the .aij file).

• Set the following security auditing characteristics:

Enable or disable security auditing.

Enable or disable security alarms.

Check each user’s first access for the specified audit objects.

Check for forced write operations of audit journal records.

Set security audit event class flags.

Set audit security alarm names.

Set the security audit file name.

• Create an online copy of a database.

• Monitor and record performance statistics.

• Display any database area (header, indexes, and data areas).

• Change the lock timeout interval (a deferred action seen only by new
users).

Oracle Rdb Database Maintenance 1–11

• Change the following database characteristics:

Change the open mode of the database to either automatic or manual.

Change the default number of database buffers per user (a deferred
action seen only by new users).

Change the default number of database recovery buffers (a deferred
action seen only by new users).

Change allocation and extension characteristics for the .aij file.

Change the allocation characteristics for an .snp file.

Change the space allocation characteristics, such as extension values of
the database.

Note

The database can dynamically extend as required, but the DBA can set
a default value by which to extend the database.

Change the global buffer count (a deferred action seen only by new
users).

Change the maximum number of global buffers per user (a deferred
action seen only by new users).

Add a journal (if multiple .aij files of a fixed size are being used and if
there are available slots).

Alter or drop a journal (cannot drop an active journal).

Change journal backup server characteristic.

Change journal backup file name.

Change journal cache file name.

Change journal extent.

Change journal log server.

Change journal notify procedure.

Change journal overwrite procedure.

• Change the following storage area characteristics:

Enable or disable volume spreading.

1–12 Oracle Rdb Database Maintenance

Enable or disable extension, and set extension parameters (minimum,
maximum, and percent).

Enable or disable journaling for write-once storage areas.

• Change the following system storage area (such as the RDB$SYSTEM
storage area) characteristics, if you have exclusive access to the storage
area:

Set the read-only and write-once attributes (except storage area).

Change SPAM thresholds.

Truncate an .snp file (truncating an .snp file blocks read-only
transactions).

Add or drop a storage area.

Enable or disable SPAMs.

• Check the database integrity by using the RMU Verify command (this
operation must wait for exclusive and batch-update transactions to
complete).

• Update metadata, as follows:

Create or drop catalogs.

Create, alter, or drop collating sequences.

Create or drop constraints.

Create, alter, or drop domains.

Create or drop functions.

Create, alter, or drop indexes.

Create or drop modules.

Create or drop query outlines.

Grant or revoke protection.

Create, alter, or drop tables.

Create or drop triggers.

Create, alter (certain parameters as previously specified), or drop
storage areas, all with only exclusive access to the storage area.

Create, alter, or drop storage maps.

Create or drop views.

Oracle Rdb Database Maintenance 1–13

• Move a storage area.

See Chapter 3, Chapter 5, Chapter 7, Chapter 8, Chapter 9, the Oracle Rdb7
Guide to Database Design and Definition, and the Oracle Rdb7 Guide to
Database Performance and Tuning for more information.

1.5.8 Offline DBA Activities
As DBA, you must perform the following activities off line because they require
the database to be shut down:

• Create, alter, or drop a database.

You can alter any of the database objects and database characteristics
as stated in Section 1.5.7 with the database on line and while users are
attached to the database.

• Change the following database characteristics:

Change the maximum number of database users.

Change the maximum number of cluster nodes that can access the
database.

Change the database read-only or read/write attribute (storage area).

Enable or disable snapshots.

Change the snapshots deferred characteristic.

Change the global buffer enabled characteristic.

Change the lock carryover optimization characteristic.

Change checkpoint parameters.

Change fast commit parameters.

Change the characteristics of database locks (whether adjustable lock
granularity is enabled or disabled).

Change the after-image journaling (drop and add the file name used or
change the enable/disable option) for a single extensible .aij file.

Reserve journal files.

Reserve storage areas.

Change the statistics enabled or disabled characteristic.

Change page-level or row-level locking.

1–14 Oracle Rdb Database Maintenance

Change the requirement for a dictionary to be used when metadata is
changed.

Refer to the Oracle Rdb7 Guide to Database Design and Definition for more
information on changing database characteristics, adding new storage areas,
changing and deleting storage areas, adding and deleting indexes, and adding
and deleting storage maps.

1.5.9 DBA Activities Requiring a Database Reload Operation
The following activities require the database to be shut down, unloaded with
the SQL EXPORT statement, and reloaded with the SQL IMPORT statement:

• Changing the buffer size

• Changing the number of users on a single-file database (unload and reload
operations are not required for a multifile database)

• Changing the number of cluster nodes for a single-file database (unload
and reload operations are not required for a multifile database)

Refer to the Oracle Rdb7 Guide to Database Design and Definition for more
information on using the SQL EXPORT and IMPORT statements.

1.5.10 Quick and Automatic Database Recovery
Oracle Rdb automatically detects abnormal termination of users’ transactions
and initiates rollback and recovery without causing data inconsistency. Refer
to Chapter 10 for more information on journaling and recovery for update
transactions, and the recovery-unit journal (.ruj) file.

In a cluster environment, Oracle Rdb will coordinate recovery even if the node
that started the original transaction is no longer present, thereby ensuring
recovery capability and database integrity in a cluster environment. In
addition, database recovery processes (DBRs) start in parallel to recover from
node failures. Refer to the Oracle Rdb7 Guide to Database Performance and
Tuning for more information on the automatic recovery procedure.

1.5.11 Database Integrity
Database integrity has been one of the primary features of Oracle Rdb since
its inception. Automatic detection, rollback, and recovery of incomplete
transactions through user-based recovery-unit journaling, after-image
journaling, and use of the OpenVMS Distributed Lock Manager means that
Oracle Rdb maintains optimum integrity in all OpenVMS environments. These
environments include single or multiple CPU nodes, CI clusters, local area
clusters, mixed clusters, and DECnet distributed environments. Each database

Oracle Rdb Database Maintenance 1–15

page contains a checksum, which is checked by Oracle Rdb and recalculated
after each update.

Refer to Chapter 7 for a description and examples of database backup and
verification, Chapter 9 for information on journaling and recovery, and the
Oracle Rdb7 Guide to Database Performance and Tuning for information on
using Oracle Rdb in a cluster environment.

1.5.12 Checking Database Integrity and Evaluating Performance
The Oracle RMU management utility includes the RMU Verify, RMU Dump,
and RMU Analyze commands for checking database integrity and performing
database analysis.

A database should be verified regularly. If problems are detected, the cause
must be determined before the database is made accessible to users again.
Verifying a database is discussed in Chapter 5. One method of isolating
database integrity problems is to display the contents of the page that
is corrupt for a more detailed inspection. Displaying database pages and
interpreting the contents are described in Chapter 11 and Chapter 12.
Information on database integrity is described in Chapters 7, 8, 9, and in
the Oracle Rdb7 Guide to Database Performance and Tuning.

The performance of a database application should be monitored regularly to
provide a benchmark for the application and to detect early signs of problems
as the database grows or changes in size. The RMU Show Statistics command
is used to analyze database performance. For more information about DBA
tools for evaluating performance and database behavior, refer to the Oracle
Rdb7 Guide to Database Performance and Tuning.

Occasionally, transactions may compete for resources and cause deadlocks to
occur. Deadlocks are detected and broken by Oracle Rdb (through its use of
the OpenVMS Distributed Lock Manager). Information on deadlocks and other
lock statistics can be viewed and recorded using the RMU Show Statistics
command. Refer to the Oracle Rdb7 Guide to Database Performance and
Tuning for more information on using this command and interpreting its
results.

1.6 Creating Sample Single-File and Multifile Databases
This manual describes maintenance topics and provides examples from the
sample personnel databases, single-file personnel and multifile mf_personnel,
which are used throughout Oracle Rdb documentation. You can follow
along and type in most of the examples if you have access to copies of these
databases.

1–16 Oracle Rdb Database Maintenance

The sample personnel database created by the Installation Verification
Procedure (IVP) is small and is a single-file database. It has only 9 tables,
each containing from a few to 100 rows, and 3 views. For more information
about the location and creation of the sample personnel databases, refer to
the Migrating Oracle Rdb7 Databases and Applications to Digital UNIX or the
Migrating Oracle Rdb7 Databases and Applications to OpenVMS Alpha.

Oracle Rdb Database Maintenance 1–17

2
Monitoring Your Oracle Rdb Databases

After your database is created and in use, programs and interactive SQL can
access it using data manipulation language (DML) statements. The Oracle
Rdb monitor process collects and maintains information about database use
and overall activity.

This chapter describes the Oracle Rdb monitor process, lists the different types
of monitor information you can display, tells you how to produce each type of
monitor information, and explains how to use the RMU Show commands to
display information about:

• Users of a specific database

• Users of all databases

The RMU Show commands and monitor log file display information for a
single Alpha or VAX computer; they do not display information about an entire
cluster environment. To obtain summary information about database activity
over time, display the monitor log file using operating system commands (for
example, the TYPE command on OpenVMS or the more command on Digital
UNIX).

The RMU Dump commands display the following clusterwide information for
any Oracle Rdb database:

• Users of a database throughout a cluster environment

• Current settings of database characteristics such as after-image journaling
and lock options

• Contents of database files

Monitoring Your Oracle Rdb Databases 2–1

2.1 The Oracle Rdb Monitor Process
The Oracle Rdb monitor runs under the SYSTEM account in a detached
process called RDMS_MONITOR. The monitor process controls database
access, initiates the automatic recovery procedure, and maintains a log of
database activity. A monitor process must be running on your computer for
you to use Oracle Rdb.

You start and stop the monitor process interactively using the RMU Monitor
command.

OpenVMS On OpenVMS systems, you execute the RMONSTART.COM command file that
starts the monitor process from within your system’s startup file, which is
executed each time you start up your system.

For example, you execute the RMONSTOP.COM command file to stop the
monitor from within your SYS$MANAGER:SYSHUTDWN.COM command file,
which is executed each time you shut down your system. See the Oracle Rdb7
Installation and Configuration Guide for further information. ♦

Digital UNIX On Digital UNIX systems, the monitor runs under the ownership of the dbsmgr
account. Refer to the RMU Monitor command in the Oracle RMU Reference
Manual for additional information. ♦

There is only one monitor process per version of Oracle Rdb installed per node,
no matter how many databases there are.

If you want to shut down a single database and immediately recover recovery-
unit journal (.ruj) files, use the RMU Close command with the Wait qualifiers.
(On OpenVMS systems, you can shut down a single database clusterwide by
also including the Cluster qualifier on the the RMU Close command.)

Use either the Abort=Delprc qualifier, to close the database immediately, or
the Abort=Forcex qualifier, to close the database and allow process rundown.
Then, use the RMU Monitor Stop command to shut down the database monitor.
If you want to shut down all database activity on the computer without first
closing the database, but you want to allow current user processes to continue
and run down before stopping, use the RMU Monitor Stop command with the
Noabort qualifier (see Section 2.1.1).

The monitor process keeps track of current database users. You can enter the
RMU Show commands to access this information and display it. The monitor
process records certain database activity, including the nature of each attach
request, in the monitor log file.

2–2 Monitoring Your Oracle Rdb Databases

If a database needs recovery—the monitor process determines this by reading
the database root (.rdb) file—the attach request is denied or delayed until
the recovery can be completed. The monitor also opens the database when it
receives an attach request for a database that is not already open, provided the
database administrator (DBA) has enabled automatic opening of the database.

2.1.1 Starting and Stopping the Monitor Process Interactively
You can start and stop the monitor process interactively using the
RMU Monitor command.

OpenVMS Note

Oracle Rdb recommends that you start the monitor from the SYSTEM
account, which has SETPRV privilege. If you do not start the monitor
from a SYSTEM account, you will need the following privileges:
ALTPRI, CMKRNL, DETACH, PSWAPM, SYSGBL, SYSNAM,
SYSPRV, and WORLD. If your nonsystem account lacks any of these
privileges, the monitor process may not start, or it may start but not
operate properly.

♦

Use the RMU Monitor Stop command to stop the monitor process interactively.
Example 2–1 shows this command on an OpenVMS system.

Example 2–1 Stopping the Monitor Process

$ RMU/MONITOR STOP

When you stop the monitor interactively, by default no new Oracle Rdb
processes are allowed to start, and normal process rundown is allowed for
active users. No new users (including those issuing RMU commands) are
allowed to access the database until the monitor is restarted.

Use the Wait qualifier to indicate that Oracle Rdb should wait until the local
monitor shutdown is complete. The default is Nowait.

Use the Abort qualifier to abort active database user processes when you stop
the monitor. The default is Noabort.

Example 2–2 shows how to use this command on a Digital UNIX system.

Monitoring Your Oracle Rdb Databases 2–3

Example 2–2 Stopping the Monitor Process and Aborting User Processes

$ rmu -monitor stop -abort

OpenVMS On OpenVMS systems, you can abort user processes by forcing an image exit
in one of the following two ways:

• FORCEX

Causes an exit handler to recover user processes that have been forced off
the database system (from a forced process exit) and returns them to the
operating system prompt ($). FORCEX is the default.

• DELPRC

Deletes a user process and causes a recovery process to start the next time
someone attaches to the database. DELPRC logs the user off the system.

For detailed information about the FORCEX and DELPRC system services,
refer to the OpenVMS system services routines documentation. ♦

Any transactions that were active when the user processes were aborted are
recovered the next time any Oracle Rdb user attaches to the database.

Use the RMU Monitor Start command to start the monitor process again
interactively. Enter the command (the command for an OpenVMS system is
shown in Example 2–3) from each node on which users access Oracle Rdb
databases.

2–4 Monitoring Your Oracle Rdb Databases

Example 2–3 Starting the Monitor Process

$ RMU/MONITOR START

2.1.2 Renaming the Monitor Log File
OpenVMS Each time the monitor process starts, it creates a new version of the monitor

log file. By default, the monitor log file name is SYS$SYSTEM:RDMMON.LOG
in a standard or single-version environment. When Oracle Rdb is running in
a multiversion environment, a 2-digit number is appended to the file name
to represent the version number. For example, the monitor log file name in
a multiversion environment for V7.0 is SYS$SYSTEM:RDMMON70.LOG.
The SYS$SYSTEM logical name points to the SYS$SYSROOT:[SYSEXE]
directory by default. The logical name SYS$SYSROOT points to a specific
disk device and directory, such as 111DUA1:[SYS1.], which equates to the
SYS$COMMON logical name. Therefore, to find the default location of the
RDMMON.LOG file, set your default directory to SYS$SYSTEM.

You can display the contents of the current monitor log file by using the
operating system TYPE command or a text editor, as shown in Example 2–4
(you need the OpenVMS SYSPRV privilege to display the monitor log file).

Example 2–4 Displaying the Contents of the Monitor Log File

$ TYPE SYS$SYSTEM:RDMMON.LOG
$
$! Use TPU to examine a running log file.
$
$ EDIT/TPU/READ_ONLY SYS$SYSTEM:RDMMON.LOG

You can specify a device and directory other than the default to receive the
monitor log file by stopping and restarting the monitor interactively. If you
do specify a different device and directory, as shown in Example 2–5, you
can define a system-level logical name to point to the new location (you must
have SYSNAM privilege). For example, define the system-level logical name
as RDBMONITOR. You can also rename the log file itself. You may want to
specify a different device and directory for the monitor log file if you have the
disk space available.

Monitoring Your Oracle Rdb Databases 2–5

Example 2–5 Specifying a Different Device and Directory for the Monitor
Log File

$ RMU/MONITOR STOP
$ DEFINE/SYSTEM /EXECUTIVE_MODE RDBMONITOR JL$DISK:[NEWPORT]
%DCL-I-SUPERSEDE, previous value of RDBMONITOR has been superseded
$! Next, either start the monitor manually or edit and run the
$! RMONSTART.COM procedure to start the monitor.
$!
$! To start the monitor manually, enter the following command:
$ RMU/MONITOR START/OUTPUT=RDBMONITOR:MY_MONITOR.LOG
$!
$! To start the monitor by using the RMONSTART.COM procedure,
$! modify the RMONSTART.COM file to use the RDBMONITOR logical name
$! by adding the /OUTPUT=RDBMONITOR qualifier.
$ EDIT SYS$STARTUP:RMONSTART.COM

.

.

.
$ RMU/MONITOR START /OUTPUT=RDBMONITOR

.

.

.
[EOB]
* EXIT
$ @RMONSTART

To display the contents of the new monitor log file, enter the command shown
in Example 2–6.

Example 2–6 Displaying the Contents of the Monitor Log File

$ TYPE RDBMONITOR:MY_MONITOR.LOG
$
$! Use TPU to examine a running log file.
$
$ EDIT/TPU/READ_ONLY RDBMONITOR:MY_MONITOR.LOG

If you define your own RDBMONITOR logical name, remember to include the
new DEFINE command in the SYSTARTUP.COM file so it will be executed
each time your system is started. ♦

2–6 Monitoring Your Oracle Rdb Databases

2.1.3 Changing the Monitor Process Priority
By default, the monitor process is given a base priority of 15, the highest
interactive priority possible, when it is started. This default base priority
level is suitable for most environments. You can change the monitor process
base priority by stopping and restarting the monitor interactively, as shown in
Example 2–7.

Example 2–7 Stopping and Changing the Monitor Process Priority

$ RMU/MONITOR STOP
$ RMU/MONITOR START/PRIORITY=6

Do not specify a base priority for the Oracle Rdb monitor that is lower than the
base priority for any user’s process doing database activity. Giving the monitor
process a base priority higher than any user process base priority ensures that
the monitor is not locked out from CPU access by application programs. If the
monitor process cannot get CPU time, you cannot use your database.

Note

Be sure that the monitor process is not locked during database recovery
operations. If the database recovery process (DBR) created by the
monitor (which has the same base priority as the monitor) is locked out
from the CPU, you may not be able to recover and use your database.

2.1.4 Reopening the Monitor Log File
Use the RMU Monitor Reopen_Log command to create a new version of the
monitor log file, as shown in Example 2–8 (you must have the same privileges
for this operation as for starting and stopping the monitor process, as described
in Section 2.1.1).

Example 2–8 Reopening the Monitor Log File

$ RMU/MONITOR REOPEN_LOG

The monitor process creates a new version of the monitor log file in the
same directory and with the same name as the old version. You can use this
command to enable monitor logging again if it has been disabled due to an
error. Use the RMU Show System command to determine if monitor logging
has been disabled, as shown in Example 2–9.

Monitoring Your Oracle Rdb Databases 2–7

Example 2–9 Showing Oracle Rdb System Status

$ RMU/SHOW SYSTEM
Oracle Rdb V7.0-0 on node MOE 13-SEP-1995 10:35:09.66

- monitor logging is disabled

database DUA01:[KIBBLES.RDMS3]CORE.RDB;3
- 1 active database user

Monitor logging is disabled if an error occurs that prevents the monitor process
from writing to the monitor log file. You can determine the error by looking at
the operator console log. Usually the error is a device-full error that prevents
the monitor from extending the log file. When that happens, the monitor
disables logging but otherwise functions normally.

Use the RMU Monitor Reopen_Log command shown in Example 2–10 to enable
logging again after you correct the error that caused logging to be disabled.

Example 2–10 Reopening the Monitor Log File and Showing Oracle Rdb
System Status

$ RMU/MONITOR REOPEN_LOG
$ RMU/SHOW SYSTEM
Oracle Rdb V7.0-0 on node MOE 13-SEP-1995 10:35:09.66

database DUA01:[KIBBLES.RDMS3]CORE.RDB;3
- 1 active database user

Note

Purge monitor log files periodically. They can become quite large and
take up disk space.

2.1.5 Reading the Monitor Log File
Each time the monitor receives a request from a user process and carries out
an action, it records the activity in the monitor log file. You can examine the
contents of the current monitor log file by using the operating system TYPE
command, as shown in Example 2–11.

2–8 Monitoring Your Oracle Rdb Databases

Example 2–11 Reading the Contents of the Monitor Log File

$ TYPE SYS$SYSTEM:RDMMON70.LOG

--

13-SEP-1995 18:01:45.49 - Oracle Rdb V7.0-0 database monitor started

--
.
.
.

Current time is 13-SEP-1995 18:01:45.50

13-SEP-1995 12:04:45.64: Linked MON (RDBVMS) RDBVMS70$:[KODABLD]
13-SEP-1995 11:01:34.51: Compiled KOD$MON (LARK) KODB$:[MON]
13-SEP-1995 10:58:29.76: Compiled KOD$LIBRARY (LARK) KODB$:[CODE]

==
GETSYI - System Information (SYI$_)

==
.
.
.

==
Current User Status

==

database SYS$SYSTEM:PERSONNEL.RDB;5
* database is available for utility access only
- 1 active database user

- 21E00AB5:1 - Ramses, RAMSES - active user
- image _999DUA10:[VIEWS]SQL$.EXE;1

database DUA01:[KIBBLES.RDMS]CORE.RDB;3
- 1 active database user

- 21E00894:1 - _VTA74:, ORION - active user
- image _998DUA9:[TOP]SQL$.EXE;1

14-SEP-1995 14:54:41.26 - received show request from 21E0116F:0
- process name NEWPORT, user NEWPORT
- show request completed successfully

14-SEP-1995 14:55:30.65 - received user attach request from 21E0116F:1
- process name NEWPORT, user NEWPORT
- for database DUA01:[DB]PERSONNEL.RDB;1 [_996DUA17] (13057,2,0)
- for utility access
- cluster recovery completed successfully
- cluster watcher is active
- sending normal user attach reply to 21E0116F:1

(continued on next page)

Monitoring Your Oracle Rdb Databases 2–9

Example 2–11 (Cont.) Reading the Contents of the Monitor Log File

14-SEP-1995 14:58:10.28 - received user image termination from 21E00AB5:1
- database shutdown of DUA02:[DB]PERSONNEL.RDB;5 is complete

13-SEP-1995 14:59:36.29 - received user image termination from 21E0116F:1
- abnormal user termination detected
- database monitor created recovery process RDM_RB23_1 (22404453)
- user termination suspended until recovery ready

13-SEP-1995 14:01:10.42 - received recovery attach from 22404453:1
- process name RDM_RB23_1, user OXFORD
- sending normal recovery attach reply to 22404453:1

13-SEP-1995 14:01:10.43 - received recovery ready from 22404453:1
- process name RDM_RB23_1, user OXFORD
- sending normal recovery ready reply to 22404453:1

13-SEP-1995 14:01:12.43 - received recovery image termination from 22404453:1
- recovery was successful

13-SEP-1995 14:01:12.59 - received recovery process termination from 22404453:1
- recovery was successful
- database shutdown of DUA01:[DB]PERSONNEL.RDB;1 is complete

The last section of the log file contains a record of all database monitor activity
that has taken place since the log file was opened. Example 2–11 contains the
following information:

• A record of an RMU Show command

• A normal user attach request

• A normal database shutdown

• An abnormal termination by the user

You can also display the monitor log file by using a text editor. For example, to
edit the file using TPU, enter the command shown in Example 2–12.

Example 2–12 Using an Editor to Read the Contents of the Monitor Log File

$ EDIT/TPU/READ SYS$SYSTEM:RDMMON.LOG

2–10 Monitoring Your Oracle Rdb Databases

The command shown in Example 2–12 copies the monitor log file into a TPU
buffer that you can search for keywords, such as abnormal user process
termination. (You need SYSPRV privilege to edit the monitor log file.) The log
file header contains operating system and process environment information
useful for debugging.

Each monitor log file records the complete operating system and process
context in which the monitor is running. You can use this information to verify
settings, such as the monitor process priority (JPI$_AUTHPRI), and other
process privileges or quotas. If you have problems with Oracle Rdb software,
preserve your monitor log files until those problems are resolved.

The Current User Status section of the log file header records user activity at
the time the log file was created. This output is the same as that displayed
when you issue an RMU Show Users command.

When you type the monitor log file, you display a record of database activity
that is current to the minute before you issued the operating system TYPE
command. This information is useful for monitoring the nature of database
activity, including attach requests, user actions, recovery processes, and so
forth.

2.2 Listing Active User Information
You can use three RMU Show commands to display information about the
current status of database activity on your node:

• RMU Show System

Lists the databases that are currently open and a summary of the number
of users currently accessing each database on a particular node.

• Show Version

Identifies the current version of Oracle Rdb.

• RMU Show Users

Lists the databases that are currently open and the users currently
attached to each database, including recovery routines, if any, on a
particular node. This command also displays global buffer information for
the node on which the RMU Show Users command is issued. It displays
global buffer information for the specified database only if global buffers
are enabled for that database.

Monitoring Your Oracle Rdb Databases 2–11

Use the RMU Show System command to display information about all database
activity on your computer system. The RMU Show System command displays
each database name and a summary of activity for each database, as shown in
Example 2–13.

Example 2–13 Showing Oracle Rdb System Status

$ RMU/SHOW SYSTEM
Oracle Rdb V7.0-0 on node MOE 13-SEP-1995 10:35:12.66

database DUA01:[JETSON.MAD.DICT1]DATATEST.RDB;1
- 1 active database user

database DUA01:[KIBBLES.RDMS]CORE.RDB;1
- 1 active database user

Use the RMU Show Version command to see what version of Oracle Rdb is
currently running. The RMU Show Version command does not show version
numbers for remote databases, only for the locally installed version of Oracle
Rdb, as shown in Example 2–14.

Example 2–14 Showing the Current Version of Oracle Rdb

$ RMU/SHOW VERSION
Executing RMU for Oracle Rdb V7.0-0
Database DUA01:[DB]MF_PERSONNEL.RDB;1 requires version 7.0

You can use the SHOW VERSION statement in SQL to determine what version
of Oracle Rdb is running.

You can include a database file specification with your RMU Show Users
command to display active users for a single database only, as shown in
Example 2–15.

Oracle Rdb displays information about the following three types of database
users:

• A program or interactive terminal that is attached to the database by
means of an SQL ATTACH statement

• A terminal operator or command procedure that has issued an RMU Open
command

• The automatic recovery routine, which processes recovery-unit journal
(.ruj) files

2–12 Monitoring Your Oracle Rdb Databases

Example 2–15 Showing Open Databases and Attached Users

$ RMU/SHOW USERS MF_PERSONNEL
Oracle Rdb V7.0-0 on node MOE 13-SEP-1995 10:35:15.66

database DUA01:[DB]:MF_PERSONNEL.RDB;1
* database is opened by an operator
- global buffer count is 50
- maximum global buffer count per user is 2
- 48 global buffers free
- 1 active database user

- 21E0116F:1 - NEWPORT, NEWPORT - active user
- image SYS$SYSTEM:SQL$.EXE;1
- 2 global buffers free

Many processes begin and end automatically. Consequently, repeated RMU
Show Users commands can produce displays that differ from one moment to
the next.

2.3 Displaying Clusterwide User Information
Use the RMU Dump Users command to display a list of all database users on
the cluster, as shown in Example 2–16.

Monitoring Your Oracle Rdb Databases 2–13

Example 2–16 Displaying a List of Database Users on a Cluster System

$ RMU/DUMP/USERS MF_PERSONNEL
Active user with process ID 216055B5

Stream ID is 1
Monitor ID is 2
Transaction ID is 21
Recovery journal filename is DUA01:[RDM$RUJ]MF_PERSONNEL$0097232208D5D240.RUJ;1
Read/write transaction in progress
Transaction sequence number is 128

Active user with process ID 226008B4
Stream ID is 1
Monitor ID is 1
Transaction ID is 82
Snapshot transaction in progress
Transaction sequence number is 129

Active user with process ID 22600839
Stream ID is 1
Monitor ID is 1
Transaction ID is 162
No transaction in progress

Each monitor process is assigned a monitor identification number (ID) when it
establishes access to a database. Example 2–16 shows the monitor IDs for each
monitor process accessing the database and the file specifications for the .ruj
files. For a complete summary of activity for that database, you can execute
the RMU Show Users and the RMU Show Statistics commands on each node in
the cluster on which database user processes reside. To do this, you can make
command procedures of the RMU commands you want to execute and submit
them simultaneously to batch queues on each node. Use the Output= qualifier
with the RMU commands to direct the output to disk files in a single directory
to which you have access, and then display or print the contents of the files.

OpenVMS
VAX

OpenVMS
Alpha

For OpenVMS Version 6.0 or higher, you can use the System Management
utility (SYSMAN) to centralize the management of nodes and clusters.
Example 2–17 shows one way to use SYSMAN to show the users on all nodes
in the cluster, in this case two nodes. You need OpenVMS OPER privilege to
perform this operation. Also, if you are accessing remote (nonlocal) nodes, you
may need to use a password to gain access to all nodes. See the OpenVMS
system management utility documentation for more information.

2–14 Monitoring Your Oracle Rdb Databases

Example 2–17 Using SYSMAN and the RMU Show Users Command on a
Cluster Configuration

$ MCR SYSMAN
SYSMAN> SET ENVIRONMENT /CLUSTER /USERNAME=ASTER
Remote Password: (enter your user password here)
%SYSMAN-I-ENV, current command environment:

Clusterwide on local cluster
Username ASTER will be used on nonlocal nodes

SYSMAN> DO RMU/SHOW USERS
%SYSMAN-I-OUTPUT, command execution on node BUSTER
Oracle Rdb V7.0-0 on node BUSTER 13-SEP-1995 15:17:59.54
database EXAMP:[ORION]MF_PERSONNEL.RDB;1

- 1 active user
- 25A00944:1 - ORION, ORION - active user

- image 100DUA1:[SYS0.SYSCOMMON.][SYSEXE]SQL$.EXE
%SYSMAN-I-OUTPUT, command execution on node MUSTER
Oracle Rdb V7.0-0 on node MUSTER 13-SEP-1995 15:17:59.54
database CHAMP:[ORION]MF_PERSONNEL.RDB;1

- 1 active user
- 14B11843:1 - ALPHA, ALPHA - active user

- image 100DUA1:[SYS0.SYSCOMMON.][SYSEXE]SQL$.EXE
SYSMAN> EXIT
$

Example 2–17 shows one active user each on nodes BUSTER and MUSTER,
both using the SQL interactive interface. When snapshot (.snp) files are
enabled, a read/write transaction writes before-images to the snapshot file for
the rows being updated, and attaches the transaction sequence number (TSN)
to these rows. All database changes are tracked by the TSN. If after-image
journaling is enabled, the .ruj file holds all before-images of updates based
on TSNs and the after-images are written to the after-image journal (.aij) file
based on TSNs.

If a system problem occurs and the database becomes corrupt, the database
must be restored to its previous state just prior to the time of the failure before
users can attach to it again. The .ruj file automatically rolls back uncommitted
update changes to the database when the system comes back on line. Because
the .aij file logs all committed transactions since the previous backup operation
of the database (or since the after-image journaling was enabled), the .aij file
can roll forward committed changes to a database restored from a previous
backup operation, if necessary. Both processes make modifications to the
database based on the TSNs of each transaction for the .ruj file of each active
process, and for all committed transactions in the single .aij file.

Monitoring Your Oracle Rdb Databases 2–15

The TSN is used to schedule the use of database resources for each active
transaction that needs to lock tables, index node records, and data rows. This
scheduling is important in a multiuser environment to carry out transactions
in an orderly manner.

2.4 Displaying Database Characteristics
Database characteristics describe the current settings of Oracle Rdb options,
for example, the number of database users and the current state of certain
database operations, such as backup and restore.

When you create an Rdb database, you establish database characteristics
either explicitly or by default. You can modify some database characteristics by
using the SQL ALTER SCHEMA statement.

To determine the current settings, use the RMU Dump or the RMU Dump
Header command to display database characteristics contained in the database
root file. Either command displays database header information such as
database parameters, storage area parameters, snapshot area for storage area
parameters, and user information, such as the number of active users.

For example, the following RMU Dump Header command displays the mf_
personnel database header file information on a Digital UNIX system:

rmu -dump -header mf_personnel

Digital UNIX If you created the sample mf_personnel database as explained in Chapter 1,
you can enter this command yourself and read the complete output.

2–16 Monitoring Your Oracle Rdb Databases

3
Security Auditing on OpenVMS

OpenVMS
VAX

OpenVMS
Alpha

This chapter describes the security auditing performed by Oracle Rdb running
on OpenVMS systems.

Security auditing a database provides a means of easily recognizing attempts
to compromise the security of a database. When you invoke security auditing,
you can monitor and collect security audit records on many specific operations
performed on a database. You can also send alarms to specified security
operators’ terminals notifying security operators of significant events as they
happen. By periodically reviewing security audit records in a process called
audit analysis, you can determine how secure a particular database is and
decide if further steps are necessary to make it more secure.

Oracle Rdb security auditing is modeled after the OpenVMS auditing model
and uses several components of this model. This chapter briefly describes those
aspects of OpenVMS security auditing that are used by Oracle Rdb. Refer
to the OpenVMS document set for a more detailed description of OpenVMS
security auditing and how it works.

This chapter describes the Oracle Rdb implementation of security auditing as
it relates to Oracle Rdb objects. The chapter is divided into four sections that
provide the following information:

• An overview of Oracle Rdb security auditing, see Section 3.1

• A description of the security audit event types, see Section 3.2

• How to define security events to be audited, see Section 3.3

• How to review security audit information, see Section 3.4

Security Auditing on OpenVMS 3–1

3.1 An Overview of Oracle Rdb Security Auditing
Oracle Rdb security auditing records security-relevant events as they occur
on a per-database basis. A security-relevant event is some operation that
affects the security of the objects in the database. Security-relevant events are
characteristically grouped into these event types: Audit, Daccess (discretionary
access), Protection, and RMU. See Section 3.2 for descriptions of these event
types. Three types of objects can be audited: Database, Table, and Column.

3.1.1 Default Security Auditing and Oracle RMU Security Auditing Commands
By default, Oracle Rdb security auditing is enabled for the Audit event type.
When you start security auditing, all uses of the RMU Set Audit command are
audited.

Use the RMU Set Audit command to start or stop security auditing, to enable
or disable security auditing for different event types, to change event types
currently being audited, or to modify any audit features currently enabled
for an Oracle Rdb database. The RMU Set Audit command is the Oracle Rdb
equivalent to the DCL command, SET AUDIT.

Use the RMU Show Audit command to display the current set of security
auditing characteristics in effect. The RMU Show Audit command is the
Oracle Rdb equivalent to the DCL command, SHOW AUDIT.

Use the RMU Load Audit command to load database security audit records
from the binary OpenVMS security audit journal file into an Oracle Rdb
table. The RMU Load Audit command is the Oracle Rdb equivalent to the
DCL command ANALYZE AUDIT. Both commands transform the binary
information into formatted ASCII text for further analysis. See the Oracle
RMU Reference Manual for a complete description of these Oracle Rdb security
audit commands.

Section 3.3 describes how to use the RMU Set Audit and RMU Show Audit
commands, set security auditing characteristics, and show the current security
auditing settings. Section 3.4 describes how to use the RMU Load Audit
command to create an Oracle Rdb table and how to review security audit
information.

3–2 Security Auditing on OpenVMS

3.1.2 Use of OpenVMS Security Auditing
Oracle Rdb security auditing uses several components of the OpenVMS Audit
utility. The most important component is the OpenVMS audit server. The
OpenVMS audit server performs the following functions:

• Handles the processing and distribution of all audit information

• Monitors security auditing resources (virtual memory and disk space)

• Prevents the loss of security information when resources are depleted

The OpenVMS audit server performs its tasks in the following order:

1. Receives a binary-formatted audit packet message in the OpenVMS audit
server mailbox (MBA3)

2. Writes a copy of the binary message to the security archive file, if enabled,
and to the OpenVMS security audit log file

3. Formats the binary message into ASCII text and sends the security alarm
message to the operator communication manager (OPCOM) process that
displays the message at the security operator terminals

Oracle Rdb generates and populates its own audit packets, and sends the
binary audit messages to the OpenVMS audit server by using the MBA3
mailbox. The OpenVMS audit server stores Oracle Rdb security audit records
in the OpenVMS security audit journal file and relays security alarm messages
to the security operator terminals.

Oracle Rdb security audit information coexists with OpenVMS audit
information in the OpenVMS security audit log file. You can use the DCL
command, SHOW AUDIT/JOURNAL, to determine the security audit journal
file currently being used by your database. The RMU Load Audit command can
extract Oracle Rdb information from the OpenVMS security audit log file for a
particular database and place it in an Oracle Rdb table for further analysis.

Security auditing events for an Oracle Rdb database can result in two forms
of output: alarms and audits. Alarms are one-time notifications of Oracle Rdb
database security events that are sent to all terminals enabled as security
operators. Audits are the audit records or recorded history of Oracle Rdb
security events that are written to the OpenVMS audit journal file.

Security Auditing on OpenVMS 3–3

3.1.3 Monitoring Security Auditing Resources
The audit server process monitors system resources and alerts you if resource
limitations develop that threaten the orderly processing of security auditing
messages. The following auditing resource problems might be encountered:

• The volume of messages being written to the OPCOM mailbox exceeds the
capacity of the mailbox.

• The disk that holds the system security log file has no more free disk space.

• Virtual memory for the audit server process is not sufficient.

• The logical link connection to a remote node (containing the security
archive file) is broken.

See the OpenVMS documentation set for a detailed description of these
problems and how each can be resolved. Because Oracle Rdb security auditing
uses the same system resources as OpenVMS security auditing, you need to
know where to check if an auditing resource problem develops.

3.2 Security Audit Event Types
Four security-relevant events can occur in Oracle Rdb. Each event type records
information in a unique format and addresses different auditing needs within
Oracle Rdb. The event types are:

• Audit—Describes the auditing of audit changes.

• Daccess—Describes the auditing of object access, using privileges.

• Protection—Describes the auditing of privilege set modification.

• Oracle RMU—Describes the auditing of Oracle RMU events.

Sections 3.2.1, 3.2.2, 3.2.3, and 3.2.4 describe each event type.

3.2.1 The Audit Event Type
The Audit event type describes the Audit events that occur when you issue
the RMU Set Audit command to indicate that the auditing (and security)
characteristics for the database have changed. Security alarms and security
audit journal records are both produced by default for this audit event type.
The auditing information recorded for the RMU Set Audit command notes the
modifications performed to the audited database if the results of the RMU Set
Audit command are successful. Unsuccessful Audit events are not audited
because they do not directly affect the security or auditing of the database.

3–4 Security Auditing on OpenVMS

Audit is the default event type. You cannot disable Audit with the RMU
Set Audit command. Audit is enabled when Oracle Rdb security auditing is
started.

3.2.2 The Daccess Event Type
The Daccess (discretionary access) event type describes the Daccess events
that occur whenever any SQL statement or Oracle RMU command is used
that requires an access privilege set (APS) check. Distinct Oracle Rdb Daccess
events (that is, separate SQL statements and Oracle RMU commands) can be
grouped together by the privilege that is needed to execute them. Multiple
SQL statements and Oracle RMU commands require the same privilege.

Oracle Rdb audits the SQL statements and Oracle RMU commands that
require Oracle Rdb to make access control decisions based on privileges
associated with the database objects. Oracle Rdb Daccess event auditing
is therefore tightly integrated with the discretionary access control (DAC)
privilege system. When the privilege is checked, a Daccess event type audit
record is produced that shows the following information:

• The statement or command given

• The access required

• The privilege (OpenVMS or Oracle Rdb) used to gain access

• If the access check for the statement or command performed resulted in
Success or Failure

Daccess event auditing is strictly under the control of the Oracle Rdb security
administrator. The Oracle Rdb security administrator can audit user access by
using any privilege to any object. This can be done by enabling the auditing
of the Daccess event type, and specifying the privileges, objects, and users to
be audited. In addition to the regular set of privileges that can be specified
for auditing with this event type, two privileges, Success and Failure, can
also be specified. These two privileges provide a quick way to indicate that all
successful and failed access attempts to the database objects should be audited.
See the Oracle Rdb7 Guide to Database Design and Definition for a list of
privileges required to perform SQL data definition language (DDL) and data
manipulation language (DML) operations and Oracle RMU commands.

OpenVMS has a comparable event to Daccess, the FILE_ACCESS event
type. The OpenVMS system security administrator can require OpenVMS
access check auditing by enabling the FILE_ACCESS event, regardless of the
presence of owner-specified access mode auditing.

Security Auditing on OpenVMS 3–5

3.2.3 The Protection Event Type
The Protection event type describes the Protection events that occur whenever
the SQL GRANT and REVOKE statements are used to change the access
privilege set (APS) for a database object. The audit information recorded for
these statements notes the success of the operation and the modifications
performed to the APS. This procedure is different from the Daccess event type,
which records only the Success of object access. Unsuccessful Protection events
are not audited because they do not directly affect the security or auditing of
the database. For instance, a user can enter the following SQL statement:

SQL> GRANT INSERT
cont> ON SCHEMA AUTHORIZATION TEST
cont> TO [RDB];

If auditing of the DBCTRL database privilege is enabled, then this statement
results in a Daccess audit record indicating that a user attempted to access
the Test database, using the DBCTRL privilege. However, unless Protection
auditing is enabled, no record of the modifications is made to the APS.

3.2.4 The RMU Event Type
The RMU event type describes the Oracle RMU events that occur whenever
an Oracle RMU command is performed. The auditing information notes the
Oracle RMU command performed. Table 3–1 shows the Oracle RMU functions
that are not audited because they cannot attach to the database to perform the
auditing function.

Table 3–1 Oracle RMU Functions That Are Not Audited

Oracle RMU Function
Oracle RMU
Privilege OpenVMS Privilege

Convert database RMU$CONVERT
RMU$RESTORE

Restore database RMU$RESTORE READ access to the
database backup (.rbf)
file

Restore only root file RMU$RESTORE READ access to the
.rbf file

Recover database RMU$RESTORE

Dump the export file READ access to the
interchange (.rbr) file

(continued on next page)

3–6 Security Auditing on OpenVMS

Table 3–1 (Cont.) Oracle RMU Functions That Are Not Audited

Oracle RMU Function
Oracle RMU
Privilege OpenVMS Privilege

Extract database RMU$UNLOAD

Start database monitor1

Reopen database monitor log1

Stop database monitor1

RMU Show with no database specified
RMU Show System
RMU Show Users

RMU$SHOW
RMU$BACKUP
RMU$OPEN

WORLD

Show locks WORLD

Dump journals or backup file RMU$DUMP
RMU$BACKUP
RMU$RESTORE

OpenVMS access to
the recovery-unit
journal (.ruj) file

Optimize .aij file RMU$BACKUP
RMU$RESTORE

1Start or stop the monitor, or reopen the monitor log file from a SYSTEM account with SETPRV
privilege. The process that starts the monitor attempts to give the monitor all privileges; the
required privileges are: ALTPRI, CMKRNL, DETACH, PSWAPM, SETPRV, SYSGBL, SYSNAM,
SYSPRV, and WORLD.

3.3 Defining Security Events to Be Audited
To define and implement security auditing requirements for a database, you
define auditing requirements at four levels of increasing scope. These four
levels are:

• The user level

Use the Enable or the Disable=Identifiers=(Identifier-List) qualifier to
enable or disable auditing of user access to database objects.

Security Auditing on OpenVMS 3–7

• The Daccess level

Use the Enable or the Disable=Daccess=[Object-Type=(object-name-list)]
Privileges=(priv-list) qualifier to enable or disable auditing of access to
database objects by users who have the privileges you specify. You can use
the Type qualifier to specify that events enabled at this level produce either
alarms or audit records, or both.

• The event level

Use the Enable or the Disable qualifier to enable or disable security
auditing for events. You can use the Type qualifier to specify that events
enabled at this level produce either alarms or audit records, or both.

• The top level

Use the Start and Stop qualifiers for starting and stopping security
auditing. Use the Type=(Alarm | Audit) qualifier to specify the type of
auditing to use, sending either alarms or recording audit records, or both.

Based on these four levels, Oracle Rdb recommends the following method for
setting up database security auditing:

1. Design and implement security auditing at the bottom or user-level first,
and progress to the top level where security auditing is actually started.

2. After defining the user-level auditing requirements, determine the
discretionary access or Daccess audit event requirements and define them.

3. Determine the event-level requirements and define them. Once you have
defined these three lower levels, the entire security auditing design is
defined for your database.

4. Start security auditing and specify the types of auditing desired: sending
alarms, recording audit records, or both.

When you use this four-level approach, everything you want audited is
audited the moment you start security auditing. If you choose to implement
security auditing in some other way (for example, in reverse order) your
security auditing requirements are not complete the moment you start security
auditing because only the default characteristics are used. As a result, events
that should be audited might not be. Eventually, as you define your security
auditing requirements, these items are audited, but not until you actually
specify or define them as part of your security auditing system.

Setting up your auditing system in the recommended manner is especially
important for the security of those databases you want audited. It is also the
best way to guarantee that any or all database activity is being audited the
moment you open the database for user access.

3–8 Security Auditing on OpenVMS

Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4 show examples of how to implement
security auditing and display the results.

3.3.1 Setting User-Level Information for Security Auditing
The first level of security that should be implemented for a database is user-
level security auditing. At this level, you can enable or disable auditing of
user access to objects listed in the Enable or the Disable=Daccess=Object-Type
qualifier. When this level of auditing is established, any user whose identifier
you specify is audited for accessing the database objects with the privileges
specified.

You can specify user identification code (UIC) identifiers, general identifiers,
and system-defined identifiers in the identifier list. You can also use wildcard
characters within the identifiers to identify groups of users. For example, the
[*,*] identifier indicates public and means all users are audited. When you
specify more than one identifier, separate the identifiers with commas and
enclose the identifier list within parentheses. Any use of UIC identifiers with
commas, such as [RDB,JONES], must be enclosed within quotation marks,
as in "[RDB,JONES]". There is no order dependence in the list of identifiers.
As long as the user matches some identifier anywhere in the list, that user
is audited. When you use IDENT=(identifier-list) to specify one or more
identifiers to be audited, those identifiers are audited whenever they access
any object for which auditing has been enabled.

The following example establishes auditing for two users and then shows how
to display the enabled identifiers:

$ RMU/SET AUDIT/ENABLE=IDENTIFIERS=("[RDB,BOB]","[RDB,MACK]") MF_PERSONNEL
$ RMU/SHOW AUDIT /IDENTIFIERS MF_PERSONNEL

Enabled identifiers:
(IDENTIFIER=[RDB,BOB])
(IDENTIFIER=[RDB,MACK])

3.3.2 Setting Audit Access to Database Objects (Daccess Auditing)
After you have established user-level auditing, the next step is to define
audit access to database objects, known as Daccess event auditing. This step
allows you to audit access to database objects by users who have the privileges
you specify. You can specify more than one object type (Database, Table, or
Column) in a single RMU Set Audit command. If you want to establish audit
access to more than one of these object types, you can specify the audit access
for each in the same command. The privileges specified, however, apply to all
objects specified in the same command. To ensure that the proper privileges
are specified for an object, specify audit access to different objects in separate
commands.

Security Auditing on OpenVMS 3–9

If you specify an object type, you must also specify one or more object names,
and one or more privileges. If you specify more than one object name, separate
the object names with commas and enclose the list within parentheses. For
example, if you want to specify auditing access to the object type Table, you
can then specify the list of tables you want audited, such as EMPLOYEES and
JOB_HISTORY.

For the object types you specify, you must select which privileges to audit by
using the Privileges=Privilege qualifier. The privileges that can be specified
with the Privileges qualifier are listed in Table 3–2. Specifying a privilege
for an object with an ‘‘N’’ in Table 3–2 does not yield an error. Because the
specified privilege is never checked for that object, it is not audited.

Table 3–2 Daccess Privileges for Database Objects

SQL Privilege DATABASE TABLE/VIEW COLUMN

ALTER Y Y N

CREATETAB Y Y N

DBADM Y N N

DBCTRL Y Y N

DELETE N Y N

DISTRIBTRAN Y N N

DROP Y Y N

INSERT N Y N

OPERATOR Y N N

REFERENCES N Y Y

SECURITY Y N N

SELECT Y Y N

UPDATE N Y Y

ALL Y Y Y

FAILURE Y Y Y

SUCCESS Y Y Y

Daccess event auditing does not begin immediately after an RMU Set Audit
Enable=Daccess=Object-Type command is issued, nor does it end immediately
after an RMU Set Audit Disable=Daccess=Object-Type command is issued. If a
user has attached to a database and has accessed the audited object before the
RMU Set Audit command is given, then access to that object may or may not

3–10 Security Auditing on OpenVMS

be audited for the life of the attach, depending on the state of auditing at the
time the object was first accessed.

For any users already attached to the database, auditing does not begin after
an RMU Set Audit Enable=Daccess=Object-Type command is issued until they
detach and attach to the database again, then access the object whose auditing
was enabled. The same is true if auditing of an object is disabled or ended.
Auditing ends only for users who have detached and attached to the database
again, then accessed the object whose auditing was disabled.

The following example establishes Daccess auditing for the Database object
type. Users who use the Select privilege are audited. The following OpenVMS
example also shows how to display the Daccess event auditing settings for a
database.

$ RMU/SET AUDIT/ENABLE=DACCESS=DATABASE/PRIVILEGES=(SELECT) MF_PERSONNEL
$ RMU/SHOW AUDIT/DACCESS=DATABASE MF_PERSONNEL
Security auditing STOPPED for:

DACCESS (disabled)
DATABASE

(SELECT)

Security alarms STOPPED for:
DACCESS (disabled)

DATABASE
(SELECT)

The following example establishes Daccess auditing for the Table object type.
The example shows the EMPLOYEES and JOB_HISTORY tables for users who
use the Insert, Update, and Select privileges. This example also shows how to
display the Daccess event auditing settings for tables. By default, both alarms
and audit records are enabled.

$ RMU/SET AUDIT/ENABLE=DACCESS=TABLE=(EMPLOYEES,JOB_HISTORY) -
_$ /PRIVILEGES=(INSERT,UPDATE,SELECT) MF_PERSONNEL
$ RMU/SHOW AUDIT /DACCESS=TABLE MF_PERSONNEL
Security auditing STOPPED & enabled for:

DACCESS (disabled)
TABLE : EMPLOYEES

(SELECT,INSERT,UPDATE)
TABLE : JOB_HISTORY

(SELECT,INSERT,UPDATE)

Security alarms STOPPED & enabled for:
DACCESS (disabled)

TABLE : EMPLOYEES
(SELECT,INSERT,UPDATE)

TABLE : JOB_HISTORY
(SELECT,INSERT,UPDATE)

Security Auditing on OpenVMS 3–11

The following example establishes Daccess auditing for the Column object type.
The example shows the EMPLOYEE_ID column of the EMPLOYEES table and
the COLLEGE_CODE column of the COLLEGES table for users who use the
Select privilege. This example also shows how to display the Daccess event
auditing settings for columns. By default, both alarms and audit records are
enabled.

$ RMU/SET AUDIT/ENABLE=DACCESS=COLUMN= -
_$ (EMPLOYEES.EMPLOYEE_ID,COLLEGES.COLLEGE_CODE) -
_$ /PRIVILEGES=(UPDATE) MF_PERSONNEL
$ RMU/SHOW AUDIT/DACCESS=COLUMN MF_PERSONNEL
Security auditing STOPPED for:

DACCESS (disabled)
COLUMN : COLLEGES.COLLEGE_CODE

(UPDATE)
COLUMN : EMPLOYEES.EMPLOYEE_ID

(UPDATE)
Security alarms STOPPED for:

DACCESS (disabled)
COLUMN : COLLEGES.COLLEGE_CODE

(UPDATE)
COLUMN : EMPLOYEES.EMPLOYEE_ID

(UPDATE)

3.3.3 Enabling and Disabling Event Information for Security Auditing
The third step in setting up your security auditing scheme is to establish the
events (Audit, Daccess, Protection, or Oracle RMU) that you want audited.
Of these four events, only Daccess, Protection, and Oracle RMU events can
be enabled or disabled. The Audit event is always enabled. Auditing of
these events begins immediately for all users, including those attached to the
database.

The following example shows how to enable Daccess, Protection, and Oracle
RMU event auditing and how to display the security auditing settings. By
default, both alarms and audit records are enabled.

$ RMU/SET AUDIT/ENABLE=(DACCESS,PROTECTION,RMU) MF_PERSONNEL
$ RMU/SHOW AUDIT /ALL MF_PERSONNEL
Security auditing STOPPED & enabled for:

PROTECTION (enabled)
RMU (enabled)
AUDIT (enabled)
DACCESS (enabled)

Security alarms STOPPED & enabled for:
PROTECTION (enabled)
RMU (enabled)
AUDIT (enabled)
DACCESS (enabled)

3–12 Security Auditing on OpenVMS

Audit flush is disabled

Audit every access

Enabled identifiers:
(IDENTIFIER=[RDB,BOB])
(IDENTIFIER=[RDB,MACK])

3.3.4 Starting and Stopping Security Auditing and Other Auditing
Characteristics

The last step in setting up your security auditing scheme is to set the following
auditing characteristics before starting security auditing:

• Decide if every access attempt or just the first access attempt is to be
audited for Daccess audit event objects.

• Decide if each audit record is to be flushed individually to the security
audit file or if audit records will be buffered and written to the security
audit file according to a specified time interval.

• Select the type of auditing desired: alarms, audit records, or both.

To audit every access attempt or just the first access attempt to objects
specified for the Daccess audit event, specify the RMU Set Audit command
with the Every or the First qualifier, respectively. Both qualifiers apply to all
Daccess audit event objects for the database.

The Every qualifier applies to the Daccess event for all database objects
specified by Enable=Daccess=Object-Type qualifier. It is used to specify the
frequency of production of alarms and audit records for the Daccess event. If
the Every qualifier is specified, then an alarm or audit record is produced each
time an access check is performed for an object specified by the Enable=Daccess
clause.

If the First qualifier is specified, then during an attach, only the first time the
user accesses an object with a privilege does the First qualifier produce an
alarm or audit record. This is useful because Daccess auditing is closely tied
to access (privilege) checking in Oracle Rdb. A user’s access to an object is
determined at the time that the user first accesses the object during an attach.
This means that during an attach, object access never changes (the user always
has the same set of privileges for an object during an attach).

If the user successfully accesses an object with the appropriate privilege once
during an attach, then all subsequent accesses to that object with the same
privilege are also successful. The same is true for failed access. Therefore,
auditing using the Every qualifier, where every access with the same privilege
is audited, may yield some redundant auditing information. You can use

Security Auditing on OpenVMS 3–13

the Every qualifier for gathering statistics about the frequency of access to
database objects.

The following example specifies every enabled, auditable event be audited.
This example also shows how to display the audit settings to determine if
every access of an auditable event is set.

$ RMU/SET AUDIT/EVERY MF_PERSONNEL
$ RMU/SHOW AUDIT/EVERY MF_PERSONNEL

Audit every access

The following example specifies that just the first enabled, auditable event
be audited. This example also shows how to display the audit settings to
determine if just the first access of an auditable event is set.

$ RMU/SET AUDIT/FIRST MF_PERSONNEL
$ RMU/SHOW AUDIT/EVERY MF_PERSONNEL

Audit first access only

You can use the Flush qualifier with the RMU Set Audit command to flush
each audit record as it occurs. The audit record is flushed from the buffer
to the security audit file. The Noflush qualifier permits audit records to be
buffered for a period of time before the records are written to the security audit
file. The following example enables flushing and shows that flushing is enabled
for a database auditing scheme:

$ RMU/SET AUDIT/FLUSH MF_PERSONNEL
$ RMU/SHOW AUDIT/FLUSH MF_PERSONNEL

Audit flush is enabled

The following example disables flushing and also shows that flushing is
disabled for a database auditing scheme:

$ RMU/SET AUDIT/NOFLUSH MF_PERSONNEL
$ RMU/SHOW AUDIT/FLUSH MF_PERSONNEL

Audit flush is disabled

When you set alarms or set audit records, subsequent qualifiers in the
command line (Start, Stop, Enable, Disable) generate or affect security alarm
messages and audit records. The alarm messages are sent to all terminals
enabled as security operator terminals. The security audit journal records are
recorded in the security audit journal. You specify the security audit journal
using the DCL command, Set Audit Journal Destination.

3–14 Security Auditing on OpenVMS

By default, both security alarms and security audit journals are enabled. If you
do not specify the Type qualifier within the RMU Set Audit command, Oracle
RMU enables or disables both security alarms and security audit journals,
depending on whether the Enable or Disable qualifier is specified. You must
specify the Type qualifier with the Start, Stop, Enable, or Disable qualifier for
it to work. You cannot specify both the Alarm and Audit keywords within the
same Type qualifier clause on the command line. However, you can specify
each keyword separately within separate Type qualifier clauses on the same
command line or in two different commands. You can also accept the default of
both alarms and audit records being enabled.

The following example shows how to specify the type of auditing desired, how
to start security auditing, and how to display the security audit settings:

$ RMU/SET AUDIT /TYPE=AUDIT /START MF_PERSONNEL
$ RMU/SHOW AUDIT /ALL MF_PERSONNEL
Security auditing STARTED & enabled for:

PROTECTION (enabled)
RMU (enabled)
AUDIT (enabled)
DACCESS (enabled)

Security alarms STOPPED & enabled for:
PROTECTION (enabled)
RMU (enabled)
AUDIT (enabled)
DACCESS (enabled)

Audit flush is disabled

Audit every access

Enabled identifiers:
(IDENTIFIER=[RDB,BOB])
(IDENTIFIER=[RDB,MACK])

If you want to enable alarms and show that they are enabled, enter the
following commands:

$ RMU/SET AUDIT /TYPE=ALARM /START MF_PERSONNEL
$ RMU/SHOW AUDIT /ALL MF_PERSONNEL
Security auditing STARTED & enabled for:

PROTECTION (enabled)
RMU (enabled)
AUDIT (enabled)
DACCESS (enabled)

Security alarms STARTED & enabled for:
PROTECTION (enabled)
RMU (enabled)
AUDIT (enabled)
DACCESS (enabled)

Security Auditing on OpenVMS 3–15

Audit flush is disabled

Audit every access

Enabled identifiers:
(IDENTIFIER=[RDB,BOB])
(IDENTIFIER=[RDB,MACK])

3.4 Reviewing Security Audit Information
Security audit information exists in two forms, alarm messages and audit
records. If both alarms and security audit journaling are in effect, you can
obtain a record of the security event through a hardcopy printout or the audit
journal file.

Alarm messages are short-lived, as they display on the screen until replaced
by other alarm or system messages on a security operator’s terminal. For
this reason, you should select a terminal that provides a hardcopy printout to
capture alarm information. Alarm messages are described in more detail in
Section 3.4.1.

The usefulness of the security audit journal depends upon the procedures you
adopt to review the file on a regular basis. For example, you might choose to
create a new OpenVMS security log file each morning and review the previous
day’s version for suspicious activity. Consider these dependencies:

• The number of security events that you are auditing for a particular Oracle
Rdb database

• How many databases are being audited

Then determine if it is practical to review every audited record written to the
audit journal file. As an alternative, you might want to select a specific set
of records from the journal file, for example, all events that required certain
privileges to perform a task, or all events created outside normal business
hours. If you find any security events that appear suspicious, you can inspect
the security audit journal file more thoroughly. If you find no events of a
suspicious nature, you can archive the file for permanent storage of all security
audit records, including the Oracle Rdb database security auditing records.

The procedures for loading and reading audit journal records are described in
Section 3.4.2 and Section 3.4.3, respectively.

3–16 Security Auditing on OpenVMS

3.4.1 Interpreting Security Auditing Alarm Information
When you set audit access to a database object as in Table 3–2 for the
EMPLOYEES and JOB_HISTORY object names, any access to those object
names sends an alarm message to the security operator’s terminal. Object
name access depends upon the privilege specifications in effect.

To set up your terminal as a security operator’s terminal, you will need to
perform the following three steps:

1. Be sure you are assigned the OpenVMS SETPRV and SECURITY
privileges, so you can perform the operations to make your terminal a
security operator’s terminal.

2. Make your terminal a security operator’s terminal by entering the following
command:

$ REPLY/ENABLE=SECURITY

The standard information contained in every alarm message consists of the
following:

• Timestamp of the event

• System ID

• Database name

• Auditable event name

• Process identification (PID) number

• Event time

• User’s name

• User’s node name

• Type of auditable event (if an RMU event, then the phrase displays with
the actual Oracle RMU command)

• Object name (omitted if an RMU event)

• Object type (omitted if an RMU event)

• Type of operation performed (omitted if an RMU event)

• Access requested

• Substatus of the operation performed

• Final outcome of the event

Security Auditing on OpenVMS 3–17

• Oracle Rdb privilege used in the operation

This information is shown in more detail in Sections 3.4.1.1, 3.4.1.2, 3.4.1.3,
and 3.4.1.4.

3.4.1.1 Interpreting AUDIT Event Alarm Information
Once you have set up your terminal as a security operator’s terminal, security
audit alarm messages are displayed or printed out. For example, the RMU Set
Audit command displays the following successful alarm message:

$ RMU/SET AUDIT/ENABLE=DACCESS=DATABASE/PRIVILEGES=(SELECT) MF_PERSONNEL

$
%%%%%%%%%%% OPCOM 26-AUG-1995 15:47:56.60 %%%%%%%%%%% (from node
STORMY at 26-AUG-1995 15:48:12.92)
Message from user MACK on STORMY
Oracle Rdb Security alarm (SECURITY) on STORMY, system id: 32122
Database name: DUA1:MF_PERSONNEL.RDB;1
Auditable event: Auditing change
PID: 3B807EE3
Event time: 26-AUG-1995 15:47:56.50
User name: MACK
RMU command: RMU/SET AUDIT/ENABLE=DACCESS=DATABASE

/PRIVILEGES=(SELECT) MF_PERSONNEL
Access requested: RMU$SECURITY
Sub status: RMU required privilege
Final status: %SYSTEM-S-NORMAL
RMU privilege used: RMU$SECURITY

This alarm message shows an Audit event type change.

3.4.1.2 Interpreting Daccess Event Alarm Information
To show what alarm messages display for Daccess event types, access the
EMPLOYEES table of the mf_personnel database with the following SQL
statements:

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;

The following OPCOM message displays on your terminal screen because
you have printed the EMPLOYEES rows, using the audited SELECT (SQL
SELECT) privilege:

3–18 Security Auditing on OpenVMS

%%%%%%%%%%% OPCOM 26-AUG-1995 17:28:57.92 %%%%%%%%%%% (from node
STORMY at 26-AUG-1995 17:29:12.92)
Message from user MACK on STORMY
Oracle Rdb Security alarm (SECURITY) on STORMY, system id: 32601
Database name: DUA1:MF_PERSONNEL.RDB;1
Auditable event: Attempted table access
PID: 3C215052
Event time: 26-AUG-1995 17:29:12.88
User name: MACK
Object name: EMPLOYEES
Object type: TABLE
Operation: Select Record
Access requested: SELECT
Sub status: Oracle Rdb required privilege
Final status: %SYSTEM-S-NORMAL
Oracle Rdb privilege used: SELECT

The message provides the following information:

• Timestamp of the event (26-AUG-1995 17:28:57.92)

• System ID (32601)

• Database name (DUA1:MF_PERSONNEL.RDB;1)

• Auditable event (Attempted table access)

• Process identification (PID) number (3C215052)

• Event time (26-AUG-1995 17:29:12.88)

• User’s name (MACK)

• User’s node name (STORMY)

• Object name (EMPLOYEES)

• Object type (TABLE)

• Type of operation performed (Select Record)

• Access requested (SELECT)

• Substatus of the operation performed (Oracle Rdb required privilege)

• Final outcome of the event (%SYSTEM-S-NORMAL)

• Oracle Rdb privilege used in the operation (SELECT)

Security Auditing on OpenVMS 3–19

3.4.1.3 Interpreting Protection Event Alarm Information
To show the alarm message that displays for Protection event types, perform
an SQL GRANT statement on the mf_personnel database with the following
SQL statement:

SQL> GRANT DELETE ON EMPLOYEES TO [RDB,MACK] WITH GRANT OPTION;

The following Protection alarm message displays:

$
%%%%%%%%%%% OPCOM 26-AUG-1995 16:54:34.76 %%%%%%%%%%% (from node
STORMY at 26-AUG-1995 16:54:56.59)
Message from user MACK on STORMY
Oracle Rdb Security alarm (SECURITY) on STORMY, system id: 32127
Database name: DUA1:MF_PERSONNEL.RDB;1
Auditable event: Protection change
PID: 3F009EF8
Event time: 26-AUG-1995 16:54:56.42
User name: MACK
Object name: EMPLOYEES
Object type: TABLE
Grantee: [RDB,MACK]
New ACE privileges: DELETE
Old ACE privileges:
Final status: %SYSTEM-S-NORMAL

The final status returned was %SYSTEM-S-NORMAL and that the new ACE
privilege is DELETE. This indicates a successful alarm message. The old ACE
privileges field is blank because the user MACK had no prior privileges for the
EMPLOYEES table.

3.4.1.4 Interpreting Oracle RMU Event Alarm Information
To show what alarm messages display for Oracle RMU event types, perform an
Oracle RMU command on the mf_personnel database as follows:

$ RMU/SHOW AUDIT MF_PERSONNEL

The following successful alarm message displays:

3–20 Security Auditing on OpenVMS

$
%%%%%%%%%%% OPCOM 26-AUG-1995 16:36:20.95 %%%%%%%%%%% (from node
STORMY at 26-AUG-1995 16:36:52.95)
Message from user MACK on STORMY
Oracle Rdb Security alarm (SECURITY) on STORMY, system id: 32601
Database name: DUA1:MF_PERSONNEL.RDB;1
Auditable event: Attempted RMU command
PID: 3B807EE3
Event time: 26-AUG-1995 16:36:20.85
User name: MACK
RMU command: RMU/SHOW AUDIT MF_PERSONNEL
Access requested: RMU$SECURITY
Sub status: RMU required privilege
Final status: %SYSTEM-S-NORMAL
RMU privilege used: RMU$SECURITY

If you do not have the privilege to load the security audit records into a
database file, OPCOM sends an alarm message showing the outcome of %RDB-
E-NO_PRIV.

$ RMU/LOAD/AUDIT MF_PERSONNEL AUDIT_RECORDS -
_$ SYS$COMMON:[SYSMGR]SECURITY_AUDIT.AUDIT$JOURNAL
%%%%%%%%%%% OPCOM 26-AUG-1995 17:20:34.54 %%%%%%%%%%% (from node
STORMY at 26-AUG-1995 17:20:57.97)
Message from user MACK on STORMY
Oracle Rdb Security alarm (SECURITY) on STORMY, system id: 32601
Database name: DUA1:MF_PERSONNEL.RDB;1
Auditable event: Attempted RMU command
PID: 4140396B
Event time: 26-AUG-1995 17:20:57.84
User name: MACK
RMU command: RMU/LOAD/AUDIT MF_PERSONNEL AUDIT_RECORDS

SYS$COMMON:[SYSMGR]SECURITY_AUDIT.AUDIT$JOURNAL
Access requested: RMU$SECURITY
Sub status: RMU required privilege
Final status: %RDB-E-NO_PRIV
RMU privilege used: RMU$SECURITY

%RDB-E-NO_PRIV, privilege denied by database facility

Because the user did not have the necessary privileges to perform this
operation, the alarm message displays a final status message indicating that
privilege is denied.

Security Auditing on OpenVMS 3–21

3.4.2 Using the RMU Load Audit Command
You can use the RMU Load Audit command to load audit records from the
security audit journal file into a table in your database for further analysis,
storage, and eventually for archival purposes if desired. The audit journal
records collected on an Oracle Rdb database can only be stored in the database
from which they were collected. The Oracle Rdb table into which you load the
security audit journal records is defined with the columns shown in Table 3–3.
Not all columns apply to (are used by) all audit events. The audit events that
apply for the column are listed.

Table 3–3 Columns for Storing Security Audit Journal Records

Column Name

SQL Data
Type
and Length Description

Audit Events
That Apply for
the Column

AUDIT$EVENT CHAR 16 Audit event type All

AUDIT$SYSTEM_NAME CHAR 15 Name of node on
which audit event
occurred

All

AUDIT$SYSTEM_ID CHAR 12 ID of node on which
audit event occurred

All

AUDIT$TIME_STAMP CHAR 48 Timestamp of audit
event

All

AUDIT$PROCESS_ID CHAR 12 ID of process causing
audit event

All

AUDIT$USER_NAME CHAR 12 OpenVMS name of
user causing audit
event

All

AUDIT$TSN CHAR 25 Transaction sequence
number (TSN) of
transaction causing
an audit event

All

AUDIT$OBJECT_NAME CHAR 255 Name of database
object

DACCESS,
PROTECTION

AUDIT$OBJECT_TYPE CHAR 12 Type of object DACCESS,
PROTECTION

AUDIT$OPERATION CHAR 32 Statement or
command performed

DACCESS

(continued on next page)

3–22 Security Auditing on OpenVMS

Table 3–3 (Cont.) Columns for Storing Security Audit Journal Records

Column Name

SQL Data
Type
and Length Description

Audit Events
That Apply for
the Column

AUDIT$DESIRED_ACCESS CHAR 16 Oracle Rdb privilege
required for
statement/command

DACCESS

AUDIT$SUB_STATUS CHAR 32 Substatus of audit
event

DACCESS

AUDIT$FINAL_STATUS CHAR 32 Final status of audit
event

All

AUDIT$RDB_PRIV CHAR 16 Oracle Rdb privilege
used for object access

DACCESS

AUDIT$VMS_PRIV CHAR 16 OpenVMS privilege
used for object access

DACCESS

AUDIT$GRANT_IDENT CHAR 192 OpenVMS identifiers
for modified access
control entry (ACE)

PROTECTION

AUDIT$NEW_ACE CHAR 192 New access control
entry

PROTECTION

AUDIT$OLD_ACE CHAR 192 Old access control
entry

PROTECTION

AUDIT$RMU_COMMAND CHAR 512 RMU command given AUDIT, RMU

The RMU Load Audit command automatically creates a table if one does not
exist. To create and load the table, determine the location of the security audit
journal file by entering the following DCL command:

$ SHOW AUDIT/JOURNAL
List of audit journals:

Journal name: SECURITY
Journal owner: (system audit journal)
Destination: SYS$COMMON:[SYSMGR]

SECURITY_AUDIT.AUDIT$JOURNAL
Monitoring: free disk space
Warning threshold: 100000 blocks
Action threshold: 50000 blocks
Resume threshold: 80000 blocks

Security Auditing on OpenVMS 3–23

To create and load the database table named AUDIT_RECORDS, enter the
following Oracle RMU command:

$ RMU/LOAD/AUDIT MF_PERSONNEL AUDIT_RECORDS -
_$ SYS$COMMON:[SYSMGR]SECURITY_AUDIT.AUDIT$JOURNAL
%RMU-I-DATRECSTO, 85 data records stored

This command loads only audit records from the journal file SECURITY_
AUDIT.AUDIT$JOURNAL that are specific to the mf_personnel database.
That is, the database name specified is used to identify both the audit records
to be loaded and the database into which they are to be loaded. The audit
journal may contain audit records for other databases, but they are not loaded.

3.4.3 Reviewing Audit Journal Records
Once you have loaded the security audit records into a database table, you can
perform queries on the table and further analyze the contents of the security
log file. As a security administrator you may be interested in inspecting one or
more of the following:

• Certain event types

• Certain users

• Date or time range (or both) of the audited events

• Type of database object for which audit records exist

• Type of statement or command performed

• Final status of the audit event

• Protection characteristics of the access control entry (ACE)

The following SQL query selects the event type column, the object name
column, the object type column, the final status column, the timestamp
column, and the Oracle RMU command column. Output is ordered by the
event column.

SQL> SELECT AUDIT$EVENT,AUDIT$OBJECT_NAME,AUDIT$OBJECT_TYPE,
cont> AUDIT$FINAL_STATUS,AUDIT$TIME_STAMP,AUDIT$RMU_COMMAND FROM
cont> AUDIT_RECORDS ORDER BY AUDIT$EVENT;

AUDIT$EVENT
AUDIT$OBJECT_NAME

AUDIT$OBJECT_TYPE AUDIT$FINAL_STATUS
AUDIT$TIME_STAMP

AUDIT$RMU_COMMAND
AUDIT

3–24 Security Auditing on OpenVMS

>>
>>
>>

%SYSTEM-S-NORMAL
26-AUG-1995 14:23:45.56

RMU/SET AUDIT/ENABLE=IDENTIFIERS=([RDB,MACK])/START MF_PERSONNEL
.
.
.

DACCESS
DUA1:[MACK]MF_PERSONNEL.RDB;1
>>
>>
>>

DATABASE %SYSTEM-S-NORMAL
26-AUG-1995 15:34:34.00

.

.

.
PROTECTION

EMPLOYEES
>>
>>
>>

TABLE %SYSTEM-S-NORMAL
26-AUG-1995 20:23:16.78

.

.

.
RMU

>>
>>
>>

%SYSTEM-S-NORMAL
26-AUG-1995 20:55:11.45

RMU/SET AUDIT/ENABLE=DACCESS=COLUMN=(EMPLOYEES.EMPLOYEE_ID,
>>COLLEGES.COLLEGE_CODE)/PRIVILEGES=(SELECT) MF_PERSONNEL

.

.

.

You can create command procedures that query the information in the rows
by looking for unusual or unexpected data, such as activity occurring outside
of normal business hours. These command procedures can help automate the
analysis of security audit table data. If unusual data is found, then you can
inspect the row or rows more closely.

Security Auditing on OpenVMS 3–25

As you gather and load each day’s or week’s audit records in a table for further
analysis, you may want to store previously inspected rows in a read-only
storage area or archive them to a security archive database. This way you can
keep an historical record of the security of the database if this is important
for your application. In other cases, you may simply want to delete any
information that you have inspected and are certain represents normal activity.

3–26 Security Auditing on OpenVMS

4
Opening and Closing a Database

Opening and closing a database is the process of mapping and unmapping
database root (.rdb) file global sections (OpenVMS) or shared memory
partitions (Digital UNIX). The .rdb file contains all the database-specific
information that is loaded into memory and used to operate the database.
Maintenance operations that modify .rdb file characteristics require exclusive
access to the database; they cannot take place when the .rdb file is mapped.

Opening a database involves the following steps:

1. Checking to make sure the .rdb file has not been moved

2. Allocating database page pool space for the .rdb file

3. Creating and mapping the .rdb file into global sections or shared memory
partitions

4. Starting recovery processes if the database needs recovery

5. Initializing the .aij file, if any

Closing a database involves:

• Terminating user processes (optional)

• Unmapping global sections or shared memory partitions

Before you can use a database, it must be opened. By issuing an RMU Open
command, a database administrator (DBA) process can absorb the overhead of
opening the database before a user has accessed it. In addition, a DBA can use
the RMU Open command to open the database for restricted access to perform
specific maintenance operations and to set the global buffer parameters for the
database.

Otherwise, if the database is set for automatic opening and closing, the first
user on each node to invoke the database incurs the overhead of opening
the database, and the last user to finish incurs the overhead of closing the
database. In an environment where users frequently open and close the

Opening and Closing a Database 4–1

database, it makes sense for the DBA to use RMU Open and RMU Close
commands because the database can be opened once and left open for all users.

To ensure that your DBA process absorbs the overhead, change the automatic
opening option of the database to manual by using an SQL ALTER DATABASE
statement, specifying the OPEN IS MANUAL argument. Then, close the
database to ensure that the database is opened manually. Now you can use the
RMU Open and RMU Close commands as necessary to schedule the opening
and closing of the database. Leaving a database open does not generate
additional system overhead.

You can leave a database open indefinitely, unless you need to perform certain
maintenance operations, in which case it must be closed. For example, you
cannot delete a database with the SQL DROP DATABASE statement unless
the database is closed. You should be certain that no one can access the
database while you perform this task. However, you can back up a database,
or restore and recover individual storage areas while the database is open
and users remain attached to it by using the Online qualifier with the RMU
Backup, the RMU Restore, or the RMU Recover command. Using the Online
qualifier is discussed more fully in Chapters 7, 8, and 9, and in the Oracle
RMU Reference Manual.

When you use the SQL ALTER DATABASE OPEN IS MANUAL option with
the RMU Open Access=Restricted command, access to the database is limited
to users with SQL DBADM privilege for the database or OpenVMS BYPASS
or SYSPRV privilege. Access is limited so that maintenance operations can
proceed without interference from other users.

When you shut down your system, the Oracle Rdb monitor process
automatically closes all your databases.

4.1 Opening a Database
A database is opened in one of the following two ways:

• By using the RMU Open command

• By attaching to the database (using the SQL ATTACH statement)

Only users with sufficient Oracle Rdb privilege (SQL DBADM) or OpenVMS
BYPASS or SYSPRV privileges can enter an explicit RMU Open command
to open the database. The default action is to allow automatic opening and
closing of the database. If you specify Open Is Manual, a privileged user
must issue an RMU Open command before any user can access the database.
You can also use the SQL ALTER DATABASE . . . OPEN IS AUTOMATIC
statement to reopen the database once it has been opened manually. By using
the RMU Open command, you ensure that your database will keep global

4–2 Opening and Closing a Database

sections or shared memory partitions mapped until you use the RMU Close
command to unmap them.

When you open the database by using the RMU Open command, you can also
choose to restrict access to the database by specifying the Access=Restricted
qualifier or set the total number of global buffers and the maximum number
of global buffers per user by using the Global_Buffer=(total=I,user_limit=J)
qualifier. For more information on restricting access to the database, see the
Oracle RMU Reference Manual. For more information on setting the global
buffers for a database see the Oracle Rdb7 Guide to Database Performance and
Tuning and the Oracle RMU Reference Manual.

4.1.1 Using the RMU Open Command
The RMU Open command saves overhead for the users accessing the database.
When you open a database with the RMU Open command or the SQL ALTER
DATABASE . . . OPEN IS MANUAL statement, it remains open until you
issue an RMU Close command.

Opening a database explicitly by using one of these statements is important in
a cluster environment because of the overhead involved in joining and leaving
a group of nodes that access the same database. If you created your database
for manual opening, you must use one of these statements or the RMU Open
command on each node of your cluster to permit access to the database on all
nodes. See the Oracle Rdb7 Guide to Database Performance and Tuning for
more information about the cluster environment.

To determine if a database has been opened manually, use the RMU Show
Users command. (RMU is described fully in the Oracle RMU Reference
Manual.) You will see a message that indicates how the database was opened.
For example:

Oracle Rdb V7.0 on node TRIXIE 30-AUG-1995 10:33:23.56

database AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1
* database is opened by an operator

In Example 4–1, the mf_personnel database has been opened manually
and has one active user. You can also use the PATHNAME clause to open
databases specified by the data dictionary path names. Example 4–1 shows
an RMU Open command that opens the mf_personnel database and all the
databases specified by the data dictionary path name CDD$TOP.TEST.

Opening and Closing a Database 4–3

Example 4–1 Opening the Database Manually and Showing Users

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> OPEN IS MANUAL;

$ RMU/OPEN MF_PERSONNEL, CDD$TOP.TEST/PATH
$ RMU/SHOW USERS MF_PERSONNEL
Oracle Rdb V7.0 on node TRIXIE 30-AUG-1995 10:35:35.23

database AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1
* database is opened by an operator
- global buffer count is 50
- maximum global buffer count per user is 2
- 48 global buffers free
- 1 active database user

- 20C01F2F:0 - orion, orion - active user
- image SYS$SYSTEM:SQL$.EXE;1
- 2 global buffers allocated

If you have global buffers enabled, the RMU Show Users command also
displays the total global buffer count, the maximum global buffer count per
user, the number of free global buffers, and the number of global buffers
allocated for each user.

If you do not issue an RMU Open command for the mf_personnel database, and
no user is attached to it, the output from an RMU Show Users command shows
that no active users are attached to the database, as shown in Example 4–2.

Example 4–2 Closing the Database and Showing Users

$ RMU/CLOSE MF_PERSONNEL
$ RMU/SHOW USERS MF_PERSONNEL
Oracle Rdb V7.0 on node TRIXIE 30-AUG-1995 10:36:12.34

- no databases are accessed by this node

You can examine the current monitor log file (see Chapter 2 for details about
the Oracle Rdb monitor) to track open and close operations performed on your
database. For example, the commands in Example 4–2 produced the following
log file entries:

--

30-AUG-1995 13:38:08.33 - Oracle Rdb V7.0 database monitor log file reopened
--

4–4 Opening and Closing a Database

This is a VAX 8650
.
.
.

30-AUG-1995 10:44:45.23 - received open database request from 20C01F2F:0
- process name _RTA3:, user ORION
- for database "AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1" [_100$DUA1] (293,5,0)
- cluster recovery completed successfully
- cluster watcher is active
- sending normal open database reply to requestor

30-AUG-1995 10:45:23.46 - received show request from 20C01F2F:0
- process name _RTA3:, user ORION
- show request completed successfully

30-AUG-1995 10:46:22.78 - received user attach request from 20C01F2F:1
- process name _RTA3:, user ORION
- for database "AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1" [_100$DUA1] (293,5,0)
- sending normal user attach reply to 21E005C2:1

30-AUG-1995 10:46:12.20 - received show request from 21E005C2:1
- process name _RTA3:, user ORION
- show request completed successfully

30-AUG-1995 10:46:13.56 - received user image termination from 21E005C2:1

30-AUG-1995 10:46:55.60 - received close database request from 20C01F2F:0
- process name _RTA3:, user ORION
- for database "AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1" [_100$DUA1] (293,5,0)

- "%RDMS-F-OPERCLOSE, database operator requested database shutdown"

4.1.2 Attaching to a Database
In precompiled SQL or SQL module language, you must use the DECLARE
ALIAS statement to add a database to the implicit environment. In interactive
and dynamic SQL, you must use the ATTACH statement to add a database
to the implicit environment. The DECLARE ALIAS statements embedded in
programs or in the DECLARE section of an SQL module must come before any
DECLARE TRANSACTION or EXECUTABLE SQL statements. DECLARE
ALIAS statements tell the application what databases it can compile against.
See the Oracle Rdb7 SQL Reference Manual for more information.

If you are using the SQL precompiler or SQL module language with the
following programming languages, the first executable data manipulation
language (DML) statement executed (normally the SET TRANSACTION
statement) attaches to the database unless specified otherwise:

• SQL precompiler with Ada, C, COBOL, FORTRAN, or PL/I

Opening and Closing a Database 4–5

• SQL module language with any language that supports the calling
mechanism for host language programs for executing SQL statements
in an SQL module file

When you create a database with automatic opening, an SQL ATTACH
statement from a user opens the database as if an RMU Open command had
been issued.

Example 4–3 shows a database set for automatic opening.

Example 4–3 Changing the Database Opening to Automatic and Showing
Users

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> OPEN IS AUTOMATIC;
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> $RMU/SHOW USERS MF_PERSONNEL
Oracle Rdb V7.0 on node TRIXIE 30-AUG-1995 12:00:01.63

database AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1
- global buffer count is 50
- maximum global buffer count per user is 2
- 48 global buffers free
- 1 active database user

- 21805652:1 - _RTA7:, ORION - active user
- image SYS$SYSTEM:SQL$.EXE;1
- 2 global buffers allocated

Because the database was opened by an attach request, the message that
states the database was opened by an operator is missing from the display in
Example 4–3. This sequence produced the following entries in the monitor log
file:

--

30-AUG-1995 10:16:54.23 Oracle Rdb V7.0 database monitor started

--

This is a VAX 8650
.
.
.

30-AUG-1995 13:14:46.56 - received user attach request from 21805652:1
- process name _RTA3:, user ORION
- for database "AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1" [_100$DUA1] (293,5,0)
- sending normal user attach reply to 21805652:1

4–6 Opening and Closing a Database

30-AUG-1995 13:14:48.32 - received show request from 21805652:1
- process name _RTA3:, user ORION
- show request completed successfully

30-AUG-1995 13:14:52.78 - received user image termination from 21805652:1
.
.
.

Attaching to the mf_personnel database with the SQL ATTACH statement
opens the database. Exiting from SQL closes the mf_personnel database
because the SQL user was the only active user. An explicit SQL DISCONNECT
statement declares a database closed for the process making the request and
commits all active transactions for this process when no parameter is specified.

If you close your database in order to open it using the RMU Open command,
you must be careful not to abort user processes accidentally. By default, the
RMU Close command terminates all active processes of users on a particular
node of the specified database. See Section 4.2 for more information on closing
databases.

4.2 Closing a Database
The RMU Close command controls the process of eliminating active users in
specific database and also unmaps global sections on OpenVMS systems or
shared memory partitions on Digital UNIX systems. You can specify whether
users on a single node or users on all nodes in a cluster are to be prevented
from accessing the database.

The RMU Close command closes a database whether it was opened using an
RMU Open command or by an attach request to the database. In either case,
you must be careful not to abort active database users accidentally. By default,
an RMU Close command terminates all user processes currently accessing the
database you specify on that particular node. If you do not want to terminate
active user processes immediately, use the Noabort qualifier with the RMU
Close command. With the Noabort qualifier, users who are in the middle of
a transaction when you issue the RMU Close Noabort command will not be
forced off immediately, but instead will be allowed to finish their transaction.
See Section 4.2.2 for more information.

When you use the RMU Close command to close a database, it does not
inform users that the database is closed. Users may receive an ‘‘SYS-F-
ACCONFLICT’’ error message when they try to access a closed database but
may not realize the database was closed. However, the monitor log file records
this event. Inform your user community prior to the actual closing of the
database.

Opening and Closing a Database 4–7

OpenVMS On OpenVMS systems, if you do want to terminate active user processes, the
following commands force an exit, using Oracle Rdb:

• RMU Close Abort=Delprc Nocluster—Immediately forces all active users off
a particular node by deleting their processes, and then closes the database.

• RMU Close Abort=Delprc Cluster—Immediately deletes the processes of
existing users of a particular database throughout the cluster, and then
closes the database.

The Cluster qualifier does not actually shut down the database on the
entire cluster, but returns an error message if the database is not being
used on the node from which the command is issued.

In both cases, using the Abort=Delprc qualifier deletes the active process and
any subprocesses. The recovery-unit journal (.ruj) files are not recovered but
are left in the directories to be recovered with the next attach to the database.

To ensure that .ruj files are automatically recovered when the Abort=Delprc
qualifier is specified with the Cluster qualifier, include the Wait qualifier.
When the Wait qualifier is specified with the RMU Close command, the Cluster
qualifier actually shuts down the database for the entire cluster, even if no
other users are attached to this node. The Wait qualifier also causes the
operation to stall until the database is actually closed and recovered. See the
Oracle RMU Reference Manual for more information on the Wait qualifier.
When the NoWait qualifier is specified or the Wait qualifier is omitted,
the database is closed but recovery-unit journal files are not automatically
recovered. Hence, the database is unavailable to users until all recovery-unit
journal files are recovered. Under this circumstance, the first attach to the
database initiates the recovery process. When recovery is complete, the
database is available to users again.

If you do not want to terminate active user processes, you have the following
choices:

• RMU Close Abort=Forcex Nocluster—Immediately forces existing users (on
this node) off the specified database and then closes the database.

• RMU Close Abort=Forcex Cluster—Immediately forces existing users
(throughout the cluster) off the specified database and then closes the
database.

In both of these cases, recovery-unit journals are recovered, no .ruj files are
left in the directories, and the RMU Backup command works on the database.
Using the Abort=Forcex qualifier does not guarantee immediate termination.
The Abort=Forcex qualifier queues up a user mode asynchronous system trap
(AST) that causes the executing image to run down. However, if the process is

4–8 Opening and Closing a Database

not accepting user mode ASTs, then the image is not run down. Many factors
can delay the AST for extended periods.

A database is considered closed if no one is attached to it and no previous
RMU Open command was issued. If you issue an RMU Close command
against a database that is not open, you receive the following error message:

%RDMS-F-CANTCLOSEDB, database could not be closed as requested
-RDMS-F-DBNOTACTIVE, database is not being used
%RMU-W-FATALERR, fatal error on DUA01:[DB]MF_PERSONNEL.RDB;1

You can also use the Path qualifier to close databases specified by the data
dictionary path names. Example 4–4 shows an RMU Close command that
closes the mf_personnel database and all the databases specified by the data
dictionary path name CDD$TOP.TEST.

Example 4–4 Closing Databases and Showing Users

$ RMU/CLOSE MF_PERSONNEL, CDD$TOP.TEST/PATH
$ RMU/SHOW USERS MF_PERSONNEL
Oracle Rdb V7.0 on node TRIXIE 30-AUG-1995 13:14:33.56

- no databases are accessed by this node

The only time you must close a database is when you need exclusive access to
perform a maintenance operation. When you use the SQL ALTER DATABASE
OPEN IS MANUAL statement with the RMU Open Access=Restricted
command, access to the database is limited to users with SQL DBADM
privilege for the database or OpenVMS BYPASS or SYSPRV privilege (if the
RMU image was not installed with the OpenVMS SYSPRV privilege), so that
maintenance operations can proceed without interference from other users.

4.2.1 Closing a Database and Using SQL
Close your database before entering any of the following commands and
statements:

• RMU Backup (unless you use the Online qualifier)

• RMU Open

• SQL DROP

You can delete a collating sequence (SQL DROP COLLATING SEQUENCE)
with the database open, but the collating sequence cannot be used by the
schema or any domain in the schema.

Opening and Closing a Database 4–9

You can delete a trigger (SQL DROP TRIGGER) with an open database
with active users attached to the database and with active transactions
accessing the tables for which the trigger is defined. To delete the trigger,
you need only delete access to the table for which the trigger is defined.

Generally, if a particular SQL DROP statement cannot be performed
with active users attached to the database and with active transactions
accessing the tables or relations involved, then first close the database and
in some cases open the database manually before carrying out the desired
maintenance task. For a detailed list of concurrent metadata updates that
are allowed and additional restrictions that may apply, see the Oracle Rdb7
Guide to Database Design and Definition.

If you issue the SQL DROP DATABASE statement and the SQL ALTER
DATABASE DROP STORAGE AREA statement against an open database, you
will receive the following error message:

%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening database root file

AM$DISK:[HUMAN_RESOURCE1.DAT]MF_PERSONNEL.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

All other metadata can be dropped or deleted with users attached to the
database, but other restrictions may apply. See the Oracle Rdb7 Guide to
Database Design and Definition and the Oracle Rdb7 SQL Reference Manual
for additional restrictions.

If this error message is returned, issue an RMU Close command, as shown in
Example 4–5, and proceed with what you were doing.

Example 4–5 Closing the Database

$ RMU/CLOSE MF_PERSONNEL

By default, the RMU Close command closes the database on a particular
node (the same node on which the database was opened using an RMU Open
command) by using a forced exit of all active user processes. As shown in
Example 4–6, user processes are not allowed to terminate normally through
attrition, and transactions in progress are automatically rolled back.

4–10 Opening and Closing a Database

Example 4–6 Opening and Then Closing the Database

!
! A user accesses the database.
!
$ SQL
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> !
!
! The DBA closes the database from another terminal on the same node.
!
$ RMU/CLOSE MF_PERSONNEL
!
! The user sees the following message on the screen:
!
SQL>
%RDMS-F-OPERCLOSE, database operator requested database shutdown

No matter how the database was opened on a node, the RMU Close command,
by default, closes the database by using a forced exit of all active user processes
of the mf_personnel database. As shown in Example 4–6, the database
shutdown message is displayed.

If the shutdown request does not close the database because it cannot
terminate a particular user process, issue an RMU Show Users command
to determine which process the RMU Close command could not terminate.

When a shutdown initiated by an RMU Close command with the Noabort
qualifier is in progress, no one can attach to the database on that particular
node until after the shutdown is completed, as shown in Example 4–7.

Example 4–7 Trying to Access a Closing Database

$ SQL
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
%SQL-F-ERRATTDEC, Error attaching to declared schema mf_personnel
-RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-DBSHUTDOWN, database shutdown is in progress

Opening and Closing a Database 4–11

To prevent users from attaching to the database after database shutdown,
modify your database for manual opening when you perform maintenance
operations, if you have not already done this. You may make this modification
without interfering with current users. Enter the command shown in
Example 4–8.

Example 4–8 Changing Database Access to Manual Open

$ SQL
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> OPEN IS MANUAL;

Then issue the RMU Close command, as shown in Example 4–9.

Example 4–9 Closing the Database

$ RMU/CLOSE MF_PERSONNEL

When you finish your maintenance operation, you can issue another SQL
ALTER DATABASE statement to set the database back to automatic mode.
These statements allow users to attach to the database without you or a
privileged user having to issue an RMU Open command first, as shown in
Example 4–10.

Example 4–10 Changing Database Access to Automatic Open

$ SQL
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> OPEN IS AUTOMATIC;

SQL statements that require a closed database before they execute need
exclusive access to the database. No other users can attach to the database
(no matter how you set the OPEN parameter) until you have finished your
maintenance operation. However, when your database is set for automatic
opening, you may need to issue several RMU Close Abort=Forcex commands
before you can perform most maintenance operations, using SQL.

4–12 Opening and Closing a Database

4.2.2 Using the Noabort Qualifier to Close a Database
The RMU Close command with the Noabort qualifier allows current user
processes to terminate normally. That is, each user transaction is permitted to
finish before the user process is forced off the specified database. New users
are prevented from opening the database.

OpenVMS On OpenVMS systems, you can specify the Noabort qualifier on a specific node
by using the Nocluster qualifier; or, for all nodes in the cluster, by using the
Cluster qualifier.

For example, to close a database and allow users to finish their transactions
for a specific node, enter the command shown in Example 4–11.

Example 4–11 Closing the Database Through Attrition for a Specific Node

$ RMU/CLOSE MF_PERSONNEL /NOABORT /NOCLUSTER

In Example 4–11, users already attached to the database on this node remain
attached until their transactions finish and they automatically detach.

When the last user finishes his transaction and automatically detaches, the
database is closed. Use the RMU Show Users command to see if active users
are attached to the database, as shown in Example 4–12.

Example 4–12 Showing Active Users Attached to the Database

$ RMU/SHOW USERS MF_PERSONNEL
Oracle Rdb V7.0 on node TRIXIE 30-AUG-1995 13:34:22.46

database AM$DISK:[RESOURCE1.DAT]MF_PERSONNEL.RDB;1
* local database shutdown is in progress
- global buffer count is 50
- maximum global buffer count per user is 2
- 48 global buffers free
- 1 active database user

- 20C01F2F:0 - orion, orion - active user
- image SYS$SYSTEM:SQL$.EXE;1
- 2 global buffers allocated

Example 4–12 does not show a forced shutdown, but it is an example of a
closing of the database through attrition because of the Noabort qualifier.
When all user transactions have completed, you see the output shown in
Example 4–13.

Opening and Closing a Database 4–13

Example 4–13 Showing No Active Users Attached to the Database

$ RMU/SHOW USERS MF_PERSONNEL
Oracle Rdb V7.0 on node TRIXIE 30-AUG-1995 13:35:34.56

- no databases are accessed by this node

The RMU Close command with the Noabort and Nocluster qualifiers affects
only the node on which it is issued. In a cluster environment, a user on
another node can still attach to the database even after you issue an RMU
Close command with the Noabort qualifier on your node. This would prevent
you from performing most maintenance functions with SQL. However, you can
use the Cluster qualifier with the RMU Close command to close a database
across a cluster.

By including the Cluster and Noabort qualifiers on the RMU Close command,
you can close the database on all nodes of your cluster accessed by that
database, as shown in Example 4–14.

Example 4–14 Closing the Database Through Attrition for All Nodes

$ RMU/CLOSE MF_PERSONNEL /NOABORT /CLUSTER

To shut down your database on only some of the nodes of a cluster, you must
issue an RMU Close command with the Noabort qualifier, specifying the
Nocluster qualifier from each node you want to close. To see if there are users
on any nodes, use the RMU Show Users command. See the Oracle Rdb7 Guide
to Database Performance and Tuning for more information. ♦

See the Oracle RMU Reference Manual for more information on the syntax of
the RMU Open and RMU Close commands.

4–14 Opening and Closing a Database

5
Verifying the Integrity of Your Oracle Rdb

Database

On rare occasions, media failure, hardware failure, or software error can
corrupt your database. In a worst case situation, if the corruption is limited
to a portion of your database that is seldom accessed, you might not receive
an immediate access violation and bugcheck dump. Meanwhile, you may have
performed other regularly scheduled maintenance activities such as full and
incremental backup operations without realizing that the corruption was there.
For example, if the problem is not detected by the checksum check in a backup
operation, then your backup file also contains the corruption.

This kind of problem can go unnoticed for some time, but at some point it can
produce an access violation and bugcheck dump. You then begin the process
of determining when the problem first occurred, what caused it, and most
important, how you can get up and running again with a good version of your
database. If you are not able to restore and recover your database because all
backup files contain the corruption, you must rebuild the database from a set
of flat files.

It is important to verify your database regularly. Scheduled, full verify
operations detect problems and allow you to take prompt action.

5.1 Why You Should Verify Your Database
Verifying your database is an essential and integral part of the set of
maintenance tasks that you need to perform. You should verify the integrity of
your database at the following times:

• Before backup and optionally after restore operations

You should verify your database prior to backing it up. Doing this ensures
that database corruption is detected before the backup operation is
attempted. You can optionally verify your database after you have restored
it, depending upon whether you suspect a problem exists. For example, if
there is a disk problem or a tape reading problem, the restore operation
may eventually succeed but display tape read errors or disk write errors.

Verifying the Integrity of Your Oracle Rdb Database 5–1

If you suspect a problem, verify your database before proceeding further.
See Section 5.10 for more information on performing verify operations to
troubleshoot suspected problems.

• On a regular basis

You should verify your database by performing a full verification using the
RMU Verify All command on a regular schedule based on available time,
the size of the database, and resource constraints. More information on
devising such a plan is presented in Section 5.6.

• If you suspect a problem exists

On rare occasions, a situation may occur in which one or more error
messages display that indicate a problem with your database. You might
get an access violation and a bugcheck dump, or you may receive one
or more error messages, depending on what you were doing before the
message was received. The bugcheck dump usually includes dumps
of database pages, indexes, and so forth. You can verify these pages
and indexes to determine if pages are corrupt. Perform an RMU verify
operation to troubleshoot the suspected problem. See Section 5.10 for more
information on performing verify operations to troubleshoot suspected
problems.

• Following a system failure

You should always perform a full verification of your database if a system
failure has occurred. Oracle Rdb is designed to prevent corruption from
occurring under these circumstances. For example, Oracle Rdb uses
recovery-unit journal (.ruj) files to recover incomplete (uncommitted)
transactions on the database when user processes abort, nodes go down
in a cluster environment, or there is a complete system failure. As a
precaution, however, Oracle Rdb recommends that you perform a verify
operation of your database following a system failure.

5.2 Causes of Database Corruption
Database corruption usually results from one of the following causes:

• Abnormal image termination during a batch-update transaction

• Hardware errors such as the flipping of bits

• A software error due to a system failure

5–2 Verifying the Integrity of Your Oracle Rdb Database

When you access a database in batch-update mode, a recovery-unit journal is
not maintained for your transaction. Corruption can occur due to any failure
such as a hardware problem, a software error, abnormal image termination,
or a verb failure. An update verb that generates any type of error, such as
violating a constraint definition, causes an automatic Oracle Rdb software
rollback, corrupting the storage area. You must manually restore your
database to the state it was in before you began your batch-update transaction.
Corruption can also result from exception to a ROLLBACK statement.

Corruption caused by system failure can go unnoticed for days or weeks. The
RMU Backup command checks for certain types of corruption and displays a
message if it finds corruption. However, the only way to ensure finding most
corruption problems is to perform a verify operation.

Under certain circumstances, such as accessing a database in batch-update
mode and getting a verb failure, database corruption can go undetected if a
database verification policy is not in place. Backup and journal files might also
contain corrupt database pages.

5.3 What Happens When You Verify Your Database
By default, the RMU Verify command starts a read/write . . . protected read
transaction against the entire database. If a user has already started a
read/write . . . exclusive write or batch-update transaction, an AREABUSY
error occurs when you issue the RMU Verify command. If users have started
shared, protected, or read-only transactions, you can use the RMU Verify
command. While you are verifying the database, subsequent users can
start read-only or read/write . . . read transactions. A user cannot start a
read/write . . . write transaction until the verify operation is complete.

The database must be open to do a verify operation. You can open the database
for restricted access by closing the database and then opening it again using
the RMU Open command with the Access=Restricted qualifier. Only users
with SQL DBADM privilege can access the database during a verify operation.
If necessary, you can open the database with unrestricted access to allow
read-only transactions during the verify operation. The online verify operation
appears as a very I/O-intensive user process to other database users.

For both single-file and multifile databases, you can also verify a closed
database that is opened using the OPEN IS MANUAL clause of an SQL
ALTER DATABASE statement. However, users with SQL DBADM privilege
can access the database during the verify operation. If you want to restrict
access to the database for all users because, for example, database corruption
is suspected and you do not want any further damage to occur, you can either
notify users that the database is temporarily unavailable or close the database

Verifying the Integrity of Your Oracle Rdb Database 5–3

and open it for restricted access, start a verify operation, and then close the
database in an orderly fashion by using the Noabort and Cluster qualifier
on the RMU Close command. This command starts an orderly shutdown
throughout the cluster, does not force users off the database, prevents new
users from attaching to the database, and permits the verify operation to
continue until it is complete. See Chapter 4 and the Oracle RMU Reference
Manual for more information on the RMU Close command.

The RMU Verify command stores timestamps in the database root file (.rdb)
that indicate the time of the last full or incremental verify operation. The
Oracle RMU Reference Manual describes the RMU privileges required to
run the RMU Verify command and to update the root file with timestamp
information. The RMU Verify command compares the page timestamps and
the verify timestamps when performing an incremental verify operation. This
operation checks only those database pages that have changed since the last
full or incremental verify operation, but it must fetch all pages to make this
comparison.

If the verify operation detects a problem, an error message is returned that
tells you the page number on which the corruption occurred. Depending
upon what part of the verify operation detected the corruption, more detailed
information is returned that describes the corruption. Each error message is
described in more detail in online Help under the category RMU_ERRORS.

If a part of your database becomes corrupt due to a media failure, hardware
failure, or software error, and a user accesses that part of the database between
verify operations, the database corruption may produce an error message or
a bugcheck dump. Should this happen, you may still be able to restore your
database from an uncorrupt backup file and roll it forward. See Appendix A
for more information on handling bugcheck dumps.

5.4 What the Full Verify Operation Checks
Issuing the verify command causes RMU to check the internal data structures
of the database, confirming that they are not corrupt or providing a warning
message that there is a problem. The following tasks are performed during a
full verify operation (RMU Verify All):

• A check of the .rdb file

Checks the system of pointers from the .rdb file to the other database files
(storage area (.rda), snapshot (.snp), and after-image journal (.aij) files).

Checks that each of these database files corresponds with the information
in the .rdb file with respect to file name, file type, and version number.

• A check of all constraints to ensure that the data integrity is intact

5–4 Verifying the Integrity of Your Oracle Rdb Database

• A check of all logical areas

Checks the page verification of all database pages, which includes verifying
the page header, the page checksum, the page line indexes, and the page
tail.

The page header is checked to determine if the page is indeed what it
says it is. That is, if the page is supposed to be page 25, it is in fact
page 25.

A page checksum check involves determining if the total value of
all bytes on the page equals the checksum value stored on the page.
During normal database activity, if information changes on the page,
the checksum for the page is recalculated and updated. If some
problem has caused information to be written to the page abnormally,
the page becomes corrupt. Therefore, if the verify operation checksum
check finds a problem, and the page checksum is different from the
calculated checksum, the page is corrupt. If the checksum values
agree, it is likely that the database page is not corrupt. It is possible
that a checksum can be computed and stored correctly on the page
but that the corruption is not detected before the page is written to
disk. Therefore, the page could be corrupt and not detected by the
checksum-only verify operation.

A page line index check involves checking to see that all line entries
for storage segments correspond to a line index entry, and that the
available space on the page is exactly the amount stated. If the line
index check detects an incorrect number of line index entries, a missing
line entry, an extra line entry (storage segment), incorrect free space,
or free space where it should not be, then the page is corrupt. Such
problems can also be shown in a display of the page by the appearance
of the words ‘‘junk’’ and ‘‘overlap.’’

During a line index check, all lines on the page are fetched and verified.
If any one of these lines contains data records, then list or segmented
string verification occurs. List data is checked in both read/write and
read-only storage areas on read/write disk devices, and in write-once
storage areas on write-once, read-many (WORM) optical disk devices.
This check determines that:

+ Each (data) segment database key (dbkey) has the correct logical
area database ID (dbid) in it

+ Each (data) segment can be fetched

+ The total length of the list is correct

+ The total number of (data) segments in the list is correct

Verifying the Integrity of Your Oracle Rdb Database 5–5

+ The length of the longest (data) segment in the list is correct

Lists in write-once storage areas on WORM optical disk devices are
also checked to be sure that:

+ Each pointer segment dbkey has the correct logical area dbid in it

+ Each pointer segment can be fetched

+ The length of each data segment is correct

+ The number of data segments in each pointer segment is correct

+ The total number of pointer segments in the list is correct

The page tail check involves checking to see that the pointer points to
the correct logical area for a uniform page format storage area.

A check of all storage pages

Checks all area inventory pages (AIP), area bit map (ABM), space area
management (SPAM), and data pages. For example, with ABM page
verification, the ABM bit vector is checked and for any unusual SPAM
pages it finds, it checks the logical areas listed in those SPAM pages to
verify that there is actually a clump of pages that belongs to the same
logical area as the ABM page.

• A check of all index structures

Checks that all index structures for all sorted and hashed indexes exist
and that data records can be fetched.

For sorted indexes, a check is made to determine if the keys are sorted. In
addition, during an index verification, data records are fetched and verified
if the Data qualifier is specified.

• A check of all storage areas

Checks all pages in the list of storage areas specified and performs a
page verification check of these pages. However, if page verification has
already been done for a page prior to this time, for example, from an index
or logical area check, the page is not verified again. It also checks and
updates the page corruption table for each storage area.

• A check of all snapshot areas

Checks all snapshot areas in the list of storage areas specified in the Areas
qualifier. The snapshot area is only verified to the level of the page header,
which includes checking the number of the storage area, the page number,
and the page checksum.

• A check of all external functions

5–6 Verifying the Integrity of Your Oracle Rdb Database

Checks all external functions and verifies that the shareable image exists
on the system, is located where expected, is accessible, and that all entry
points are correct.

5.5 What Problems the Full Verify Operation Can Detect
The verify operation detects missing database files, wrong versions of database
files, and other inconsistencies between the .rdb file and the files that comprise
the database. It also detects missing or incomplete AIP, ABM, SPAM, and
data pages. The verify operation detects missing or incorrect page header
information; incorrect page checksums; any inconsistencies among the
page line indexes for the page; any missing, partial, or extra storage segments;
incorrect free space for the page; and missing or incorrect page tail information.
In addition, duplicate table names are detected within storage areas that might
result from corruption of a database.

Any missing index structures are detected, such as missing B-tree nodes,
missing duplicate B-tree nodes, missing B-tree leaf nodes, and missing data
records; for hash index structures, any missing system records, missing hash
buckets, missing hash bucket entries, missing duplicate node records, missing
data records, and missing list data are detected. Any of these structures could
be missing because the pointer to it was corrupt.

Snapshot (.snp) file page headers are checked for incorrect or missing storage
area numbers, page numbers, and checksums.

List data is checked in both read/write and read-only storage areas on
read/write disk devices and in write-once storage areas on WORM optical disk
devices for an incorrect logical area dbid for each (data) segment dbkey and
to make certain that each (data) segment can be fetched, for incorrect total
lengths of the list, for incorrect total number of (data) segments in the list, and
for incorrect lengths of the longest (data) segment in the list. In addition, lists
in write-once storage areas on WORM optical disk devices are checked for an
incorrect logical area dbid for each pointer segment dbkey and to make certain
that each pointer segment can be fetched, for incorrect lengths of each data
segment, for incorrect numbers of data segments in each pointer segment, and
for incorrect total numbers of pointer segments in the list.

Data integrity problems are detected, such as missing data, invalid data, or
misplaced data as detected from the constraint check. All defined constraints
in the database are loaded, executed, and checked. The constraint check does
not attempt to determine whether data within rows is reasonable or plausible.

Verifying the Integrity of Your Oracle Rdb Database 5–7

Page checksum problems are checked against page entries in the page
corruption table. If a page is found to have an incorrect checksum value and is
not found in the page corruption table, the page corruption table is updated.
Page corruption table updates are made during verify operations that involve
verification of storage areas.

Finally, any problems with external functions are detected; for example, are
the shareable images present on the system where they are expected, are they
accessible, and are all the entry points correct?

When a problem is detected using the verify operation, specific error messages
are returned to indicate the nature of the problem. In cases when a metadata
problem exists, such as a metadata corruption error condition, specific
information is returned to the user. In cases where more than one storage
area is found to be corrupt, the corrupt storage areas are listed. In the case of
a corrupt B-tree index, the path to the corrupt portion of the B-tree index is
provided from the root node.

Note

Verification of a piece of data involves comparing two values. If
the comparison does not succeed, either of the two values could be
corrupt. Therefore, read the verify error messages carefully. Additional
information describing each error message can be found in online Help
under the category RMU_ERRORS.

When a problem is detected and the database is found to be corrupt, the
exact problem and its location is indicated. Depending upon the corruption
problem, the database may need to be restored from backup files and recovered
to its most current state by applying the .aij files if after-image journaling is
enabled. If the problem is isolated to a storage area, then just that storage
area must be restored and recovered. If the problem is isolated to a page, then
just that page must be restored and recovered. If the problem is isolated to an
index structure, then the index must be deleted and rebuilt. More information
on devising a strategy to pinpoint and solve these problems can be found in
Section 5.6.

5–8 Verifying the Integrity of Your Oracle Rdb Database

5.6 Devising a Full Verify Strategy to Detect Problems
Oracle Rdb recommends that you perform a full verify operation regularly,
including a fetch of the rows as part of the index check. As a trade-off of
thoroughness versus performance, you can exclude the row fetch check that
is part of the index check, but this verify operation should not be substituted
for a full verify operation that includes the row fetch check. The two verify
operations are recommended in the following order of use:

1. A full verify operation of your database (including a row fetch check) to
detect problems prior to each backup operation

You should perform the fullest possible verify operation prior to a database
backup operation. A full verify operation is performed by entering the
RMU Verify command and specifying the All qualifier. By default, all paths
to rows are checked and the rows fetched as part of index verification. This
is the most thorough verify operation that you can make of your database
and consequently demands the most of your CPU and system configuration.
Every page in the database is checked. More information on using this
command is presented in Section 5.7.

2. A full verify operation of your database (excluding a row fetch check)
whenever you suspect problems exist

To troubleshoot problems, you can perform a full verify operation of
your database that excludes the row fetch check. In this case, use the
RMU Verify command with the following qualifiers: Root, Constraint,
Indexes, Nodata, Areas=*, Snapshots, Lareas=*, Segmented_Strings. This
command does as thorough a check of your database as the RMU Verify All
command but excludes fetching the rows when index verification is
performed. It is less demanding of your disks because fewer I/O operations
are required. This is a useful verify operation. For example, if you
suspect a problem exists and you want better performance from the verify
operation. See Section 5.7 for more information on using this command.

Considering your CPU size and your system configuration, there is a trade-off
between the thoroughness of the verify operation and the demand imposed on
your system in performing a full verify operation (RMU Verify All). The ideal
choice is to have the time and resources to perform this operation regularly.
In reality, it may not always be possible to do a full verify operation of your
database due to the size of your database, the amount of round-the-clock
database update activity, limited resources, and so forth. The following verify
method is not as thorough and is not a substitute for a regular full verify
operation that includes a row fetch check as part of index verification.

Verifying the Integrity of Your Oracle Rdb Database 5–9

Oracle Corporation recommends the following variation of a full verify
operation as a practical alternative when resources are limited:

• Split the full verify operation (RMU Verify All) by storage area.

Prepare a list of indexes and logical areas in each storage area by using
the RMU Analyze command.

Run a separate full verify operation for each storage area by specifying
the list of indexes and logical areas in each storage area.

The elapsed time required to verify each storage area. Devise a
schedule based on your time constraints to accomplish a full verify
operation, using the time available each day, until all storage areas
are fully verified. Elapsed times are relative to your system load, but
they are still useful for planning purposes when verify operations are
performed regularly and your system loads are comparable.

A full verify operation of your database is accomplished as if the verify
operation were run and completed during a single point in time. That is,
breaking the task into subtasks and running subtasks on consecutive days
as time is available produces the same final result—a full verify operation
of your database. For example, if you know that a full verify operation of all
storage areas requires a total of 18 hours, you can plan to accomplish the task
in approximately 6 subtasks of more or less than 3 hours each over a period of
6 days, if the areas are of similar size and complexity.

Other variations of the full verification procedure include the following:

• Combinations of full and incremental verify operations performed according
to a schedule

Based on estimates of elapsed time required to perform a full verify
operation on the database, you can schedule incremental verify operations
between the full verify operations. Incremental verify operations can be
done daily or according to the update activity on the database, and full
verify operations can precede full backup operations of the database.

• A continuous verify operation, using the Transaction_Type=Read_Only
qualifier on the RMU Verify command

You can run the verify operation continuously as a read-only transaction.
This alternative is useful when little time is available to verify the
database because users are always updating the database.

5–10 Verifying the Integrity of Your Oracle Rdb Database

You can use the RMU Extract command and specify the Item=Verify qualifier
to create a command procedure containing a script of partial RMU Verify
commands or verify command partitions that are equivalent to a full
verification (RMU Verify All) of the database. You can submit these partial
command procedures to different queues to do a full verify operation in
parallel, or you can spread out a full verify operation over several days by
verifying a piece of the database at a time.

A partitioning algorithm makes the following considerations when composing
the RMU Verify command into its partial scripts (command partition):

1. Each storage area is assigned to a partition.

2. For each table in the database, if the table is not partitioned, the table
is put in the partition corresponding to that storage area; otherwise,
if the table is partitioned across several storage areas, the partitions
corresponding to all of the storage areas are merged into one partition, and
the table is added to this new partition.

3. For each index in the database, the same process as shown in step 2 is
followed.

The scripts of partial RMU Verify commands are output in the form of a
command procedure. Each partial command or command partition is preceded
by a label of the form stream_n: where n is an integer greater than or equal
to 1. To execute the command at label stream_3:, you invoke your command
procedure by using the following formats:

On OpenVMS systems, use the following syntax:

$ @command-procedure-name stream_3

On Digital UNIX systems, use the following syntax:

$ sh script-name stream_3

The resulting command procedure accepts up to four parameters, P1–P4, as
shown in Table 5–1.

Verifying the Integrity of Your Oracle Rdb Database 5–11

Table 5–1 Parameters for the Generated Command File

Parameter Option Description

P1 stream_n Identifies the stream to be executed, where n
is the ‘‘number’’ of the RMU Verify stream to
be executed. If omitted, all streams will be
executed.

P2 [No]Log Indicates whether to use the Log qualifier in the
RMU Verify command line. If omitted, the DCL
verify switch value is used.

P3 Read_Only |
Protected | Exclusive

Supplies the RMU Verify Transaction_Type
value. If omitted, Transaction_Type = Protected
is used.

P4 Provides the name of the output file for the
RMU Verify Output qualifier. If omitted,
Output is sent to the standard output device.
(SYS$OUTPUT on OpenVMS systems and
stdout on Digital UNIX systems).

See the Oracle RMU Reference Manual for more information and an example of
running the RMU Extract Items=Verify for the mf_personnel sample database.

5.7 Interaction of RMU Verify Command Qualifiers
This section describes other available RMU Verify command qualifiers and the
specific parts of your database they check. There is a trade-off between the
performance of specific verify operations and their thoroughness. The size of
your CPU, your system configuration, the size of your database, and the nature
of your application all determine when and what verify operations you choose
for troubleshooting suspected problems in the most efficient manner.

To devise a strategy for using specific verify operations to isolate a problem
in your database, you must understand what each RMU Verify qualifier does
and how each qualifier works in combination with other qualifiers. Possible
combinations of RMU Verify qualifiers are listed here with a brief summary of
what they do.

• RMU Verify (implies Root)

Performs by default only an .rdb file verification and a full page verification
of all AIP pages in the default system storage area and all ABM pages
in each uniform storage area. By default, none of the following checks is
performed: other storage areas besides the default system storage area,
.snp files, logical areas, indexes, constraints, and lists. Specify either the

5–12 Verifying the Integrity of Your Oracle Rdb Database

All qualifier or other specific qualifiers if you want the verify operation to
perform other checks.

• RMU Verify All Incremental

Performs a verify operation of only the database pages that have changed
since the last full or incremental verify operation, based on timestamps
stored in the .rdb file and on pages. If the Incremental qualifier is not
specified, the timestamp on the page is ignored and any page can be
verified, depending on what other qualifiers are specified.

Note

Oracle Rdb recommends that you use the Incremental qualifier only
with the All qualifier for the RMU Verify command. Use of the
Incremental qualifier with other combinations of qualifiers performs
verify operations that are not intuitively clear. The use of timestamps
for the Incremental qualifier is given here to clarify the behavior
expected when using the Incremental qualifier with other combinations
of RMU Verify command qualifiers.

The timestamp on a database page is updated whenever the page is
updated. The timestamps in the .rdb file for full and incremental verify
operations are updated only if the All qualifier is specified. Therefore,
two successive incremental verify operations of the same storage area
of the database perform the same verifications if the All qualifier is not
specified. In particular, the second incremental verify operation does
not omit pages verified by the first incremental verify operation. This
is currently a restriction.

All pages are fetched to check the timestamp and to determine if the page
needs to be verified. The Incremental qualifier is useful if your CPU is
constrained or in heavy use due to other jobs running or the submission of
a large number of batch jobs that run at night at the same time you run a
verify operation. Under these circumstances, when you do an incremental
verify operation the elapsed time of verification may be less.

• RMU Verify Areas=* Checksum_Only

Performs only a checksum verification of pages (excluding page header and
page line index verification) for the list of storage areas specified in the
Areas qualifier, and checks and updates the page corruption table. This
reduces the degree of page verification and provides better performance
even though it requires fetching all the pages to check the checksum of the
page. This command is useful to troubleshoot problems and concentrate

Verifying the Integrity of Your Oracle Rdb Database 5–13

further verify operations to specific storage areas or logical areas. For
example, if you find a problem with a certain page with the checksum-only
verification, then that page can be verified completely by using other
qualifiers such as the Index or Larea qualifiers. The Checksum_Only
qualifier must be specified with the Areas qualifier to work.

• RMU Verify All

Performs a verification equivalent to entering, in the following order, the
Constraints, Root, Indexes, Data, Areas, Snapshots, Lareas, Segmented_
Strings, and Functions qualifiers. If you do not specify the All qualifier, the
default is the Root qualifier. Oracle Corporation recommends that you use
the Incremental qualifier only with the All qualifier.

• RMU Verify Root

Verifies the pointers to the database files (.rda, .snp, and .aij) for multifile
databases. This command also verifies that each database file corresponds
with what is stated in the .rdb file and belongs to the database, and checks
file names, file types, and file version numbers. AIP pages and all ABM
pages in each uniform storage area are verified. If you specify the Noroot
qualifier without qualifiers, only the AIP pages are verified. If you specify
the Noroot qualifier and the Areas or Lareas qualifier, ABM and SPAM
pages are verified when other pages in the storage area or logical area are
verified.

• RMU Verify Areas

Verifies the storage areas specified and performs page-level verification of
all pages in the storage area, and checks and updates the page corruption
table. The elapsed time for area verification is indicated in the log
messages. This is useful information when you do regular verification of
the database and have saved the verify logs. If a corruption problem is
detected and you want to verify a small part of the database, you can look
at the previous logs to determine how long it might take to verify a specific
storage area and decide on what verification to perform.

• RMU Verify Areas=* Snapshots

Verifies the snapshot area and the storage area from the list of areas
specified in the Areas qualifier, and checks and updates the page corruption
table. The snapshot area is verified only for the page header level, which
includes checking the number of the storage area, the page number, and
the page checksum. When you specify the All qualifier, Oracle RMU
automatically includes verification of all snapshot areas. You can use the
Snapshots qualifier only with the Areas qualifier.

• RMU Verify Larea=*

5–14 Verifying the Integrity of Your Oracle Rdb Database

Verifies the logical areas specified, and performs page-level verification of
all pages associated with that logical area. For uniform storage areas, only
those clumps of pages associated with the logical areas within the storage
area are checked. For mixed storage areas, page clumps are absent, so
a logical area can be placed on any combination of pages. Therefore, all
pages in the storage area are checked.

There is little difference in the elapsed time to perform either an RMU
Verify Area=* command or an RMU Verify Area=* Larea=* command.

• RMU Verify Larea=*Segmented_Strings

Verifies list data for all columns in all tables and for all items that are
verified when the Larea qualifier is specified. When only logical area
verification is considered, segmented string verification takes place as each
data record from each page of a logical area is fetched and verified.

• RMU Verify Constraints

Verifies all constraints by loading and executing each one to check the data
integrity, including references to external functions and their entry points.

• RMU Verify Indexes

Verifies the integrity of all indexes or any indexes specified by doing a
more complete index structure check for both sorted and hashed indexes,
and fetches the data records. This command also performs verification
of hashed indexes within the same area in one pass. That is, when more
than one hashed index occurs in the same storage area, all such indexes
are verified in one pass through the storage area, rather than in multiple
passes (one for each hashed index).

• RMU Verify Indexes [No]Data

Verifies the structure of all indexes or the indexes specified. The Nodata
qualifier allows for a faster but less thorough check of the index by not
checking that data records can be fetched. The default is the Data qualifier.
Using the Nodata qualifier can be a significant performance improvement
for verifying sorted indexes, but not for hashed indexes.

Section 5.10 describes how to use these qualifiers to troubleshoot suspected
problems.

Verifying the Integrity of Your Oracle Rdb Database 5–15

5.8 Measuring and Improving Verification Performance
When you perform a verify operation, the following information can be useful
to monitor performance of the verify operations and to devise verify operation
strategies:

• If you are using an RMU Verify Indexes=(sorted-index-list) Data command
to obtain a list of only sorted indexes, improve the performance of the
operation by increasing the number of database buffers with the SQL
ALTER SCHEMA statement and specify a greater number of buffers with
the NUMBER OF BUFFERS IS clause. Because more pages are in the
buffer and fewer pages are flushed from the buffer as the sorted index
is scanned and rows are fetched, performance is improved. However,
increasing the number of buffers may increase page contention because the
verify operation will not give up a page until that page is flushed from the
buffer pool.

• To improve verification performance when using either the All or the Larea
Segmented_Strings qualifier to verify segmented strings, increase the
number of database buffers. When a database page contains segmented
string segments from more than one segmented string, having more buffers
increases the chance that the page will be in memory when the second and
subsequent segmented strings on the same page are verified.

• Use the RMU Verify Log and Output qualifiers. These qualifiers record
a log of all verify operations performed on your database. Save all your
verification logs to maintain a verification history of your database for
future reference. This information is useful for devising a schedule of
verify operations or modifying your verify schedule based on elapsed times
required to complete an operation such as verifying each storage area,
devising a troubleshooting plan based on the time available to track down
a problem, or determining when a problem first appeared. Elapsed times
for each storage area are comparable only for the same command and
set of qualifiers specified. Elapsed times are also affected by the load on
your system when verify operations are performed and can increase as
the amount of data in the database increases. Therefore, elapsed times
are comparable only when verify operations are performed under identical
system loads.

• On OpenVMS systems, use the DCL MONITOR command to determine if
there is a CPU bottleneck while the verify operation is running.

5–16 Verifying the Integrity of Your Oracle Rdb Database

• On OpenVMS systems, use the DCL SHOW PROCESS/MEMORY
command to monitor memory usage for the process running the verify
operation on a specific CPU. If you are verifying sorted indexes, you
can increase the number of database buffers to improve the verification
performance.

• Use the RMU Show Statistics command to monitor data file read operations
and I/O stalls to check for disk bottlenecks while the verify operation is
running. See the Oracle Rdb7 Guide to Database Performance and Tuning
for more information on using the RMU Show Statistics command.

• Use the RMU Dump command to display or print specific database pages
for further inspection when you detect problems such as page checksum
problems.

5.9 Examples of Verify Operations on the mf_personnel Sample
Database

A full verify operation (RMU Verify All) on the mf_personnel sample database
is the most thorough verification possible. Example 5–1 shows portions of the
log file for a full verify operation.

Example 5–1 The Log File from a Full Verify Operation

$ RMU/VERIFY/ALL /LOG /OUTPUT=MFPERS_FULL_VERIFY.LIS -
_$ DB_DISK:[MFPERS]MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-BGNVCONST, beginning verification of constraints for database
DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-ENDVCONST, completed verification of constraints for database
DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-DBBOUND, bound to database "DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification

(continued on next page)

Verifying the Integrity of Your Oracle Rdb Database 5–17

Example 5–1 (Cont.) The Log File from a Full Verify Operation
%RMU-I-OPENAREA, opened storage area EMPIDS_OVER for protected retrieval
%RMU-I-OPENAREA, opened storage area EMPIDS_MID for protected retrieval
%RMU-I-OPENAREA, opened storage area EMPIDS_LOW for protected retrieval
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-BGNNDXVER, beginning verification of index COLL_COLLEGE_CODE
%RMU-I-OPENAREA, opened storage area EMP_INFO for protected retrieval
%RMU-I-ENDNDXVER, completed verification of index COLL_COLLEGE_CODE

.

.

.
%RMU-I-OPENAREA, opened storage area SALARY_HISTORY for protected retrieval
%RMU-I-ENDNDXVER, completed verification of index SH_EMPLOYEE_ID
%RMU-I-BGNHDXVER, beginning verification of hash index EMPLOYEES_HASH

as part of EMPIDS_LOW storage area
%RMU-I-BGNHDXVER, beginning verification of hash index JOB_HISTORY_HASH

as part of EMPIDS_LOW storage area
%RMU-I-ENDHDXVER, completed verification of hash index EMPLOYEES_HASH

as part of EMPIDS_LOW storage area
%RMU-I-ENDHDXVER, completed verification of hash index JOB_HISTORY_HASH

as part of EMPIDS_LOW storage area
.
.
.

%RMU-I-BGNSEGPAG, beginning verification of RDB$SYSTEM storage area
%RMU-I-ENDSEGPAG, completed verification of RDB$SYSTEM storage area

elapsed time : 00:00:00.71
%RMU-I-OPNSNPARE, opened snapshot area RDB$SYSTEM for protected retrieval
%RMU-I-BGNSNPVER, beginning snapshot verification of RDB$SYSTEM storage area
%RMU-I-ENDSNPVER, completed snapshot verification of RDB$SYSTEM storage area

elapsed time : 00:00:01.66
%RMU-I-BGNSEGPAG, beginning verification of EMPIDS_LOW storage area
%RMU-I-ENDSEGPAG, completed verification of EMPIDS_LOW storage area

elapsed time : 00:00:00.00
%RMU-I-OPNSNPARE, opened snapshot area EMPIDS_LOW for protected retrieval
%RMU-I-BGNSNPVER, beginning snapshot verification of EMPIDS_LOW storage area
%RMU-I-ENDSNPVER, completed snapshot verification of EMPIDS_LOW storage area

elapsed time : 00:00:00.11
.
.
.

(continued on next page)

5–18 Verifying the Integrity of Your Oracle Rdb Database

Example 5–1 (Cont.) The Log File from a Full Verify Operation

%RMU-I-OPENAREA, opened storage area RESUMES for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of RESUMES storage area
%RMU-I-ENDSEGPAG, completed verification of RESUMES storage area

elapsed time : 00:00:01.90
%RMU-I-OPNSNPARE, opened snapshot area RESUMES for protected retrieval
%RMU-I-BGNSNPVER, beginning snapshot verification of RESUMES storage area
%RMU-I-ENDSNPVER, completed snapshot verification of RESUMES storage area

elapsed time : 00:00:00.78
%RMU-I-BSGPGLARE, beginning verification of RDB$RELATIONS logical area

as part of RDB$SYSTEM storage area
%RMU-I-ESGPGLARE, completed verification of RDB$RELATIONS logical area

as part of RDB$SYSTEM storage area
.
.
.

%RMU-I-BSGPGLARE, beginning verification of RESUMES logical area
as part of RESUMES storage area

%RMU-I-ESGPGLARE, completed verification of RESUMES logical area
as part of RESUMES storage area

%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-I-BGNEXTFNC, beginning verification of external functions.
%RMU-I-ENDEXTFNC, completed verification of external functions.
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:03:07.68

In Example 5–1, a verification is performed that is equivalent to entering, in
the following order, the Root, Constraints, Indexes, Data, Areas, Snapshots,
Larea, Segmented_Strings, and Functions qualifiers. That is, the .rdb file is
checked first, followed by a check of all constraints, a check of all indexes and
a fetch of the rows, a check of each storage area and related snapshot area, a
check of all logical areas, and finally a check of all external functions, if any
exist.

By default, the RMU Verify command checks only the .rdb file and opens
the system storage area to perform a page verification. If the RMU Verify
command detects any problems, it displays a message that indicates the nature
of each problem. Enter the command shown in Example 5–2 to perform a
default verify operation on the mf_personnel database (use the Log qualifier to
display each step).

Verifying the Integrity of Your Oracle Rdb Database 5–19

Example 5–2 Verifying the Integrity of the Database

$ RMU/VERIFY /LOG DB_DISK:[MFPERS]MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-DBBOUND, bound to database "DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:16.17
$

In Example 5–2, the RMU Verify command checked the .rdb file in the mf_
personnel database. No database corruption was detected.

After you recover from a system failure, use the RMU Verify command with
the Areas and Checksum_Only qualifiers to determine if the database was
corrupted as a result of the failure. If you are checking the integrity of the
database after a system failure, you can use the Transaction_Type qualifier
to prevent anyone else from accessing the database until you are certain it
was not corrupted. For example, specify the Transaction_Type=Exclusive
qualifier to prevent all access to the database during verification, as shown in
Example 5–3.

Example 5–3 Using Exclusive Access During a Verify Operation

$ RMU/VERIFY/AREAS=*/CHECKSUM_ONLY/TRANSACTION_TYPE=EXCLUSIVE -
_$ /LOG /OUTPUT=MFPERS.VFY_LOG DB_DISK:[MFPERS]MF_PERSONNEL

The Transaction_Type qualifier sets the area lock for the storage areas being
verified. The valid options are: exclusive, protected, and read-only. The
protected mode is the default. All transaction types use read as the only valid
access mode. Thus, by default, the RMU Verify command starts a read/write
reserving table name list for protected read transaction.

5–20 Verifying the Integrity of Your Oracle Rdb Database

5.10 Troubleshooting Suspected Problems
Troubleshooting involves trying to isolate and detect a problem that appeared
as an error message returned to a user, an exception, a bugcheck dump, or the
result of a specific verify operation. Incomplete disk updates (only a fraction
of a page is written to disk) might be caused by a disk problem, a system
(software or hardware) failure, or a power failure. Troubleshooting these
problems involves a trade-off between the performance of the verify operation
and its thoroughness.

If you perform routine full verify operations on your database and one or
more error messages display, it may be necessary to perform a more thorough
verification of a specific part of the database. For example, with an index
problem, you could use the Data qualifier to fetch all records to try to pinpoint
the problem. The performance of this check may be slower because all index
records and all data pages pointed to by the index must be fetched and
checked.

If you suspect a problem exists, such as a disk or system problem, you might
perform a fairly quick and specific verification of your entire database, such as
a check of each page checksum. If one or more pages are found to be corrupt,
the corrupt page table (CPT) is updated to indicate the pages in each storage
area that are corrupt. With page checksum errors, the interesting factors are
the location of the problem spots in the database and the frequency with which
they occur. Clustered errors or a high frequency of errors generally indicate
disk or system maintenance problems. To correct these problems, you fix the
cause of the problem and restore and recover your database from uncorrupted
backup and .aij files.

The CPT logs known corrupt or inconsistent database pages. You can display
the contents of the CPT by using the RMU Show Corrupt_Pages command.
If no corrupt pages are logged in the CPT, the content includes a message
indicating that the CPT is empty.

Pages marked as corrupt from a verify operation are logged to the CPT display,
as shown in Example 5–4. Be sure to verify your database prior to displaying
the CPT to obtain the most current information. The CPT can hold 127 entries
and adds 4K bytes to the root file. If there are more than 127 corrupt pages
in the database, the area with the most entries is marked as corrupt and its
entries removed to allow space for more entries to be logged in the CPT.

Verifying the Integrity of Your Oracle Rdb Database 5–21

Example 5–4 Display of the Corrupt Page Table

$ RMU/SHOW CORRUPT_PAGES MF_PERSONNEL
*---
* Oracle Rdb V7.0-00 20-OCT-1995 16:16:46.51
*
* Dump of Corrupt Page Table
* Database: DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
*
*---

Entries for storage area EMPIDS_LOW

Page 2
- AIJ recovery sequence number is -1
- Area ID number is 2
- Consistency transaction sequence number is 0
- State of page is: corrupt

Page 50
- AIJ recovery sequence number is -1
- Area ID number is 2
- Consistency transaction sequence number is 0
- State of page is: corrupt

$

The CPT displays information sorted by area and page and includes the
following information:

• AIJ recovery sequence number

The AIJ recovery sequence number is the AIJ sequence number of the .aij
file needed to start recovery for the page. This field is only meaningful for
inconsistent pages; hence, a value of –1 is not meaningful. After a page is
restored, it is considered inconsistent if the .aij files are not applied. Use
this value to apply the first .aij file needed to recover the page.

• Area ID number

The storage area ID of the area to which the page belongs.

• Consistency transaction sequence number

The transaction sequence number (TSN) of the last committed transaction
to the page. This field is only meaningful for inconsistent pages; hence,
a value of 0 is not meaningful. After a page is restored, and is still
inconsistent, this value will indicate the value of the last committed TSN
for the page.

• State of the page

5–22 Verifying the Integrity of Your Oracle Rdb Database

The page can be marked as either corrupt or inconsistent.

As areas or pages are restored and recovered, eliminating the source of the
corruption, values for these entries are updated in the CPT. Once the page is
considered consistent, the entry is removed from the CPT. See Section 8.7 for
examples of restoring and recovering database pages that show how values
change for entries in the CPT as pages are restored and recovered.

Example 5–5 and Example 5–6 show the attempts to detect checksum and data
integrity corruption. No corruption is found in either instance from a scan
of the log file. The examples in Section 5.11 show verification results where
page-level corruption is detected, and display the type of error messages you
receive from this problem.

5.10.1 Using a Checksum Verification to Detect Page Corruption
To see if any information has changed on a page as a result of corruption due
to a disk or system problem, use only a page checksum verify operation. Use
the RMU Verify command with the following qualifiers:

• Areas

• Checksum_Only

• Log

• Output

For example, when you use the RMU Verify command as shown in
Example 5–5, all database page checksums are examined for possible page
corruption.

Verifying the Integrity of Your Oracle Rdb Database 5–23

Example 5–5 Verifying Only Database Page Checksums

$ RMU/VERIFY/AREAS=*/CHECKSUM_ONLY/LOG DB_DISK:[MFPERS]MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-DBBOUND, bound to database "DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-BGNSEGPAG, beginning verification of RDB$SYSTEM storage area
%RMU-I-ENDSEGPAG, completed verification of RDB$SYSTEM storage area

elapsed time : 00:00:04.66
%RMU-I-OPENAREA, opened storage area EMPIDS_LOW for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of EMPIDS_LOW storage area
%RMU-I-ENDSEGPAG, completed verification of EMPIDS_LOW storage area

elapsed time : 00:00:00.35
%RMU-I-OPENAREA, opened storage area EMPIDS_MID for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of EMPIDS_MID storage area
%RMU-I-ENDSEGPAG, completed verification of EMPIDS_MID storage area

elapsed time : 00:00:00.36
%RMU-I-OPENAREA, opened storage area EMPIDS_OVER for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of EMPIDS_OVER storage area
%RMU-I-ENDSEGPAG, completed verification of EMPIDS_OVER storage area

elapsed time : 00:00:00.35
%RMU-I-OPENAREA, opened storage area DEPARTMENTS for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of DEPARTMENTS storage area
%RMU-I-ENDSEGPAG, completed verification of DEPARTMENTS storage area

elapsed time : 00:00:00.19
%RMU-I-OPENAREA, opened storage area SALARY_HISTORY for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of SALARY_HISTORY storage area
%RMU-I-ENDSEGPAG, completed verification of SALARY_HISTORY storage area

elapsed time : 00:00:00.87
%RMU-I-OPENAREA, opened storage area JOBS for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of JOBS storage area
%RMU-I-ENDSEGPAG, completed verification of JOBS storage area

elapsed time : 00:00:00.19

(continued on next page)

5–24 Verifying the Integrity of Your Oracle Rdb Database

Example 5–5 (Cont.) Verifying Only Database Page Checksums

%RMU-I-OPENAREA, opened storage area EMP_INFO for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of EMP_INFO storage area
%RMU-I-ENDSEGPAG, completed verification of EMP_INFO storage area

elapsed time : 00:00:00.21
%RMU-I-OPENAREA, opened storage area RESUME_LISTS for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of RESUME_LISTS storage area
%RMU-I-ENDSEGPAG, completed verification of RESUME_LISTS storage area

elapsed time : 00:00:00.65
%RMU-I-OPENAREA, opened storage area RESUMES for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of RESUMES storage area
%RMU-I-ENDSEGPAG, completed verification of RESUMES storage area

elapsed time : 00:00:00.25
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:21.93
$

The checksum verify operation proceeds much faster than a full verify
operation because it checks only the page checksum for each database page.
It can detect any page corruption at the bit-value level because if the page
checksum value does not correspond to the sum of the values for the page, then
the page is considered corrupt.

Using the checksum verify operation, you reduce the degree of verification done
on a database page but allow the operation to check all database pages. You
can also restrict the verification to one or more specific storage areas where you
suspect a problem. In this instance, you might make further trade-offs between
performance and thoroughness by doing a more thorough check because you
are concentrating efforts to one or a few storage areas.

You can also specify the Incremental, Start, and End qualifiers with the
Checksum_Only qualifier.

If the RMU Verify Checksum_Only command detects a problem with a certain
page, the corrupt page table (CPT) is updated. The best corrective action for
these kinds of problems is to restore and recover the pages marked as corrupt.

5.10.2 Detecting a Data Integrity Corruption
If you suspect a problem with the data integrity of your database, you can
perform a constraint verification. All constraints defined for your database are
checked as shown in Example 5–6. The constraint verification is a complete
check of all (possible) defined column and table constraints, including:

• PRIMARY KEY constraints

• NOT NULL constraints

Verifying the Integrity of Your Oracle Rdb Database 5–25

• UNIQUE constraints

• CHECK (predicate) constraint

• Foreign key constraints

Consequently, any defined table or column constraint clauses are checked to
see that the data integrity for those tables and columns is valid.

To determine what is being checked during a constraint verify operation,
you can use the RDMS$DEBUG_FLAGS ‘‘Sn’’ flag or RDB_DEBUG_FLAGS
to show the optimization strategy with the constraint names and to specify
an output file, and use the RDMS$DEBUG_FLAGS_OUTPUT logical name
or RDB_DEBUG_FLAGS_OUTPUT configuration parameter to direct this
optimization strategy information to an output file. Specify the Output=
qualifier to direct the results of the verify operation to another output
file. Thus, output from two operations is directed to two different files.
Example 5–6 shows the output as you might see it displayed to the screen. To
disable the RDMS$DEBUG_FLAGS and RDMS$DEBUG_FLAGS_OUTPUT
logical names, deassign them. To disable the RDB_DEBUG_FLAGS and RDB_
DEBUG_FLAGS_OUTPUT configuration parameters, remove them from the
configuration file.

Example 5–6 Verifying the Constraints for a Database

$ DEFINE RDMS$DEBUG_FLAGS "Sn"
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT CONSTRAINT_CHECK.LIS
$ RMU/VERIFY/CONSTRAINTS /LOG DB_DISK:[MFPERS]MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-BGNVCONST, beginning verification of constraints for database

.

.

.
~S: Constraint name WORK_STATUS_PRIMARY_STATUS_CODE
Cross block of 2 entries

Cross block entry 1
Get Retrieval sequentially of relation WORK_STATUS

Cross block entry 2
Conjunct Aggregate-F2 Conjunct Get
Retrieval sequentially of relation WORK_STATUS

~S: Constraint name STATUS_NAME_VALUES Conjunct Get
Retrieval sequentially of relation WORK_STATUS
~S: Constraint name STATUS_TYPE_VALUES Conjunct Get
Retrieval sequentially of relation WORK_STATUS

(continued on next page)

5–26 Verifying the Integrity of Your Oracle Rdb Database

Example 5–6 (Cont.) Verifying the Constraints for a Database
~S: Constraint name EMPLOYEES_PRIMARY_EMPLOYEE_ID Conjunct
Match

Outer loop
Index only retrieval of relation EMPLOYEES

Index name EMP_EMPLOYEE_ID [0:0]
Inner loop (zig-zag)

Aggregate-F2 Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

~S: Constraint name EMP_SEX_VALUES Conjunct Get
Retrieval sequentially of relation EMPLOYEES
~S: Constraint name EMP_STATUS_CODE_VALUES Conjunct Get
Retrieval sequentially of relation EMPLOYEES
~S: Constraint name JOBS_PRIMARY_JOB_CODE
Cross block of 2 entries

Cross block entry 1
Get Retrieval sequentially of relation JOBS

Cross block entry 2
Conjunct Aggregate-F2 Conjunct Get
Retrieval sequentially of relation JOBS

~S: Constraint name WAGE_CLASS_VALUES Conjunct Get
Retrieval sequentially of relation JOBS
~S: Constraint name DEPARTMENTS_PRIMARY1 Conjunct
Match

Outer loop
Index only retrieval of relation DEPARTMENTS

Index name DEPARTMENTS_INDEX [0:0]
Inner loop (zig-zag)

Aggregate-F2 Index only retrieval of relation DEPARTMENTS
Index name DEPARTMENTS_INDEX [0:0]

~S: Constraint name JOB_HISTORY_FOREIGN1 Conjunct
Match

Outer loop
Index only retrieval of relation JOB_HISTORY

Index name JH_EMPLOYEE_ID [0:1]
Inner loop (zig-zag)

Aggregate-F1 Conjunct Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

~S: Constraint name JOB_HISTORY_FOREIGN2 Conjunct
Match

Outer loop
Sort Conjunct Get
Retrieval sequentially of relation JOB_HISTORY

Inner loop
Aggregate Sort Conjunct Get
Retrieval sequentially of relation JOBS

(continued on next page)

Verifying the Integrity of Your Oracle Rdb Database 5–27

Example 5–6 (Cont.) Verifying the Constraints for a Database
~S: Constraint name JOB_HISTORY_FOREIGN3
Cross block of 2 entries

Cross block entry 1
Conjunct Get Retrieval sequentially of relation JOB_HISTORY

Cross block entry 2
Conjunct Aggregate-F1 Conjunct
Index only retrieval of relation DEPARTMENTS

Index name DEPARTMENTS_INDEX [1:1] Direct lookup
~S: Constraint name SALARY_HISTORY_FOREIGN1 Conjunct
Match

Outer loop
Index only retrieval of relation SALARY_HISTORY

Index name SH_EMPLOYEE_ID [0:1]
Inner loop (zig-zag)

Aggregate-F1 Conjunct Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

~S: Constraint name COLLEGES_PRIMARY_COLLEGE_CODE Conjunct
Match

Outer loop
Index only retrieval of relation COLLEGES

Index name COLL_COLLEGE_CODE [0:0]
Inner loop (zig-zag)

Aggregate-F2 Index only retrieval of relation COLLEGES
Index name COLL_COLLEGE_CODE [0:0]

~S: Constraint name DEGREES_FOREIGN1 Conjunct
Match

Outer loop
Index only retrieval of relation DEGREES

Index name DEG_EMP_ID [0:1]
Inner loop (zig-zag)

Aggregate-F1 Conjunct Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

~S: Constraint name DEGREES_FOREIGN2 Conjunct
Match

Outer loop
Index only retrieval of relation DEGREES

Index name DEG_COLLEGE_CODE [0:1]
Inner loop (zig-zag)

Aggregate-F1 Conjunct Index only retrieval of relation COLLEGES
Index name COLL_COLLEGE_CODE [0:0]

~S: Constraint name DEG_DEGREE_VALUES Conjunct Get
Retrieval sequentially of relation DEGREES
~S: Constraint name CANDIDATES_LAST_NAME_NOT_NULL Conjunct Get
Retrieval sequentially of relation CANDIDATES

(continued on next page)

5–28 Verifying the Integrity of Your Oracle Rdb Database

Example 5–6 (Cont.) Verifying the Constraints for a Database
~S: Constraint name RESUMES_UNIQUE_EMPLOYEE_ID
Cross block of 2 entries

Cross block entry 1
Get Retrieval sequentially of relation RESUMES

Cross block entry 2
Conjunct Aggregate-F2 Conjunct Get
Retrieval sequentially of relation RESUMES

~S: Constraint name RESUMES_FOREIGN1
Cross block of 2 entries

Cross block entry 1
Conjunct Get Retrieval sequentially of relation RESUMES

Cross block entry 2
Conjunct Aggregate-F1 Get
Retrieval by index of relation EMPLOYEES

Index name EMPLOYEES_HASH [1:1] Bool Direct lookup
%RMU-I-ENDVCONST, completed verification of constraints for database
%RMU-I-DBBOUND, bound to database "DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:25.76
$ DEASSIGN RDMS$DEBUG_FLAGS_OUTPUT
$ DEASSIGN RDMS$DEBUG_FLAGS

Constraint verification uses an optimization scheme that permits more than
one type of constraint to be checked in consecutive scans of the data from
the same table when this is the most efficient method. For example, for
the DEGREES table, there are three table- or column-level constraints
defined: two foreign keys are defined, one of which is the EMPLOYEE_ID
column that refers to the primary key, EMPLOYEE_ID of the EMPLOYEES
table, and the other is the COLLEGE_CODE column that refers to the
primary key, COLLEGE_CODE of the COLLEGE table; the third constraint
is a column constraint for the DEGREE column that it contain only one
of the following valid values: BA, BS, MA, MS, AA, PhD, or NULL. The
constraint verify operation is optimized to check each of these constraints in
succession before checking constraints for the next table. In Example 5–6, the
following constraint checks are performed for the mf_personnel database in
this approximate order:

• For the WORK_STATUS table, the verification operation checks that values
for all rows in the STATUS_CODE column correspond to its PRIMARY
KEY table-level constraint definition. For all rows in the WORK_STATUS

Verifying the Integrity of Your Oracle Rdb Database 5–29

table, the verification operation checks the value for the STATUS_NAME
column is ACTIVE, INACTIVE, or NULL. For all rows in the WORK_
STATUS table, the verification operation checks the value for the STATUS_
TYPE column is RECORD EXPIRED, FULL TIME, PART TIME, or NULL.

• For the EMPLOYEES table, the verification operation checks that values
for all rows in the EMPLOYEES_ID column correspond to its PRIMARY
KEY table-level constraint definition. For all rows in the EMPLOYEES
table, the verification operation checks the value for the SEX column is
M, F, or NULL. For all rows in the EMPLOYEES table, the verification
operation checks the value for the STATUS_CODE column is 0, 1, 2, or N.

• For the JOBS table, the verification operation checks that values for all
rows in the JOB_CODE column correspond to its PRIMARY KEY table-
level constraint definition. For all rows in the JOBS table, the verification
operation checks the value for the WAGE_CLASS is 1, 2, 3, 4, or NULL.

• For the DEPARTMENTS table, the verification operation checks that
values for all rows in the DEPARTMENT_CODE column correspond to the
PRIMARY KEY table-level constraint definition.

• For the JOB_HISTORY table, the verification operation checks that when
it refers to the EMPLOYEES table, the foreign key, the EMPLOYEES_ID
column in the JOB_HISTORY table, is defined as a UNIQUE or PRIMARY
KEY constraint in the EMPLOYEES table.

• For the JOB_HISTORY table, the verification operation checks that when
it refers to the JOBS table, the foreign key, the JOB_CODE column in
the JOB_HISTORY table, is defined as a UNIQUE or PRIMARY KEY
constraint in the JOBS table.

• For the JOB_HISTORY table, the verification operation checks that when
it refers to the DEPARTMENTS table, the foreign key, the DEPARTMENT_
CODE column in the JOB_HISTORY table, is defined as a UNIQUE or
PRIMARY KEY constraint in the DEPARTMENTS table.

• For the SALARY_HISTORY table, the verification operation checks
that when it refers to the EMPLOYEES table, the foreign key, the
EMPLOYEES_ID column in the SALARY_HISTORY table, is defined
as a UNIQUE or PRIMARY KEY constraint in the EMPLOYEES table.

• For the COLLEGES table, the verification operation checks that values for
all rows in the COLLEGE_CODE column correspond to its PRIMARY KEY
table-level constraint definition.

5–30 Verifying the Integrity of Your Oracle Rdb Database

• For the DEGREES table, the verification operation checks that when it
refers to the EMPLOYEES table, the foreign key, the EMPLOYEES_ID
column in the DEGREES table, is defined as a UNIQUE or PRIMARY KEY
constraint in the EMPLOYEES table.

• For the DEGREES table, the verification operation checks that when it
refers to the COLLEGES table, the foreign key, the COLLEGE_CODE
column in the DEGREES table, is defined as a UNIQUE or PRIMARY KEY
constraint in the COLLEGES table.

• For the DEGREES table, the verification operation checks that the
DEGREE column contains one of the following valid values: BA, BS, MA,
MS, AA, PhD, or NULL.

• For the CANDIDATES table, the verification operation checks that for all
rows in the table, the LAST_NAME column is not null.

• For the RESUMES table, the verification operation checks that when it
refers to the EMPLOYEES table, the foreign key, the EMPLOYEE_ID
column in the RESUMES table, is defined as a UNIQUE or PRIMARY key
constraint in the EMPLOYEES table.

The constraint verify operation checks all rows in only those tables for which
you have defined column and table constraints.

5.10.3 Summary of RMU Verify Command Qualifiers for Troubleshooting
In summary, use the following RMU Verify command qualifiers in the following
ways to help you troubleshoot problems:

• For detecting suspected database problems:

RMU Verify All

Use this command regularly to perform a full verification of your
database that includes a data record, a list data fetch check, and a
list data verification. If this verify operation detects a problem, some
additional troubleshooting may be necessary to isolate the problem,
using methods described in Section 5.11.

RMU Verify Root Constraint Indexes Nodata Areas=* Snapshots
Lareas=*

Use this command for troubleshooting suspected problems with your
database because this command does not include a data record fetch
check, and its performance is better than a full verification (RMU
Verify All) of the database.

Verifying the Integrity of Your Oracle Rdb Database 5–31

• For detecting list data problems:

RMU Verify Lareas=* Segmented_Strings

Use this command for troubleshooting suspected problems with list
data. This command does full verification of segmented strings for all
columns for all tables in the database.

• For detecting disk problems and system problems:

RMU Verify areas=* Checksum_Only

Use this command for troubleshooting disk and system problems
because it performs only a checksum verification of pages of all or
a specified number of storage areas. If the problem is an unknown
change to a page, the checksum check is the best performing command
to use to detect these types of problems. If you find a problem with
a certain page, the corrupt page table (CPT) is updated. The best
corrective measure is to restore and recover those pages that are
marked as corrupt. This command also updates and removes a corrupt
page entry from the CPT as each corrupt page is restored and each
inconsistent page is recovered. See Section 5.10 for more information.

• For detecting index problems:

RMU Verify Index=(index-name) Data

Use this command for troubleshooting a suspected problem with a
specific index and to check that data records can be fetched.

RMU Verify Index=(index-name) Nodata

Use this command for troubleshooting a suspected problem with a
specific sorted index. If you are verifying a large sorted index and
you do not want to perform a data record fetch check for improved
performance, use the Nodata qualifier. Otherwise, you should always
use the Data qualifier.

• For detecting data integrity problems:

RMU Verify Constraints

Use this command for troubleshooting a suspected data integrity
problem; this command checks all defined table and column constraints,
including references to external functions and entry points.

• For detecting external function problems:

RMU Verify Functions

5–32 Verifying the Integrity of Your Oracle Rdb Database

Use this command for troubleshooting a suspected problem with
external functions. This command checks all external functions and
verifies that the shareable image exists on the system, is located where
expected, is accessible, and that all entry points are correct.

5.11 Examples of Database Corruption
Sections 5.11.1, 5.11.2, and 5.11.3 show the results of performing specific
verify operations on the database. The sections describe the following types of
problems respectively:

• A line index corruption

• A logical area corruption

• A data integrity corruption

For each example, the command used is shown along with a portion of the
log file that shows the corruption and the error messages that describe the
type of corruption. In each of these sections, the verify strategy used to detect
the problem is described along with interpretations of the error and warning
messages produced.

5.11.1 Line Index Corruption
In an attempt to isolate a problem, Example 5–7 shows a page checksum
bad warning message and a GAPONPAGE error message on page 2
(DEPARTMENTS storage area) that is returned from an area verification
of all storage areas in the database. This corrupt page is also logged in the
CPT.

Example 5–7 Page Checksum Bad Warning Message and GAPONPAGE
Error Message Returned from a DEPARTMENTS Area Verify
Operation

$ RMU/VERIFY/AREAS=* MF_PERSONNEL
%RMU-W-PAGCKSBAD, area DEPARTMENTS, page 2

contains an invalid checksum
expected: 5464C517, found: 546CC517

%RMU-E-GAPONPAGE, unaccounted gap on page 2
free space end offset : 0000004E (hex)
minimum offset of any line : 00000206 (hex)

Verifying the Integrity of Your Oracle Rdb Database 5–33

Use the online Help facility for Oracle RMU, specifically RMU_ERRORS,
to find a more detailed explanation of this error message. For example,
for the error message GAPONPAGE, the information displays as shown in
Example 5–8.

Example 5–8 Online Help File Explanation for the RMU Verify GAPONPAGE
Error Message

RMU_ERRORS

GAPONPAGE

unaccounted gap on page <num>
free space end offset : <num> (hex)
minimum offset of any line : <num> (hex)

Explanation: A gap was found between the end of free space and
the beginning of the line closest to the beginning of the page.
This could be caused by the corruption of locked free space
length, free space length or the line index.

User Action: Dump the page in question to determine the
corruption. Restore the database and verify again.

The GAPONPAGE error message can be interpreted as follows: the minimum
offset value for any line is 206 hex. The first record on the page, in this case,
line 2, is located at offset 206 hex. A display of page 2 in Example 5–9 shows
an offset of 206 hex for line 2, which is the minimum offset value of the three
lines listed on that page. The free space offset end value is at offset 4E hex. In
Example 5–9, the line 2: TSN index ends at offset 002F. To this value add the
length of free space 1E hex to get the calculated value 4E hex or, the free space
offset end value. Between offset 4E hex and offset 206 hex, the verify operation
has detected an unaccounted-for gap. Example 5–9 displays the corrupt portion
of page 2. All data beginning at offset 8E hex and continuing to offset 205 hex
is labeled as ** junk **. This is part of the unaccounted-for gap.

5–34 Verifying the Integrity of Your Oracle Rdb Database

Example 5–9 Corrupted Page 2 of the DEPARTMENTS Storage Area

$ RMU/DUMP/AREAS=DEPARTMENTS /START=2 /END=2 MF_PERSONNEL
.
.
.

0005 00000002 0000 page 2, physical area 5
546CC517 0006 checksum = 546CC517

0091FAC0 9EA7B160 000A time stamp = 31-MAR-1995 09:08:02.55
0000 001E 0012 30 free bytes, 0 locked

0003 0016 3 lines
0005 03E4 0018 line 0: offset 03E4, 5 bytes
01AE 0236 001C line 1: offset 0236, 430 bytes
0030 0206 0020 line 2: offset 0206, 48 bytes

002F01D6 0024 line 0: TSN 3080662
003101A4 0028 line 1: TSN 3211684
002E0176 002C line 2: TSN 3015030

696261434D42434D0001280000010018 008E ** junk ** ’.....(..MCBMCabi’
756E614D20656D61724620262074656E 009E ** junk ** ’net & Frame Manu’
87353931303020676E69727574636166 00AE ** junk ** ’facturing 00195.’
534D424D00011E000001001800F80000 00BE ** junk ** ’..ø.........MBMS’
727574636166756E614D206472616F42 00CE ** junk ** ’Board Manufactur’
363130300420846874756F5320676E69 00BE ** junk ** ’ing South. .0016’
424D00011E000001001800F800008736 00EE ** junk ** ’6...ø.........MB’
74636166756E614D206472616F424E4D 00FE ** junk ** ’MNBoard Manufact’
30300420846874726F4E20676E697275 010E ** junk ** ’uring North. .00’
000118000001001800F8000087343631 011E ** junk ** ’164...ø.........’
6166756E614D206472616F42464D424D 012E ** junk ** ’MBMFBoard Manufa’
87373232303004208A676E6972757463 013E ** junk ** ’cturing. .00227.’
20474E45000110000001001800F80000 014E ** junk ** ’..ø.........ENG ’
3030042092676E697265656E69676E45 015E ** junk ** ’Engineering. .00’
00011B000001001800F8000087313734 016E ** junk ** ’471...ø.........’
45206C6163696E616863654D434D4C45 017E ** junk ** ’ELMCMechanical E’
313030042087676E697265656E69676E 018E ** junk ** ’ngineering. .001’
4C4500011E0000010018F80000873039 019E ** junk ** ’90...ø........EL’
20736D657473795320656772614C5347 01AE ** junk ** ’GSLarge Systems ’
3030042084676E697265656E69676E45 01BE ** junk ** ’Engineering. .00’
00011C000001001800F8000087393633 01CE ** junk ** ’369...ø.........’
207363696E6F727463656C454C454C45 01DE ** junk ** ’ELELElectronics ’
3030042086676E697265656E69676E45 01EE ** junk ** ’Engineering. .00’

00F8000087383831 01FE ** junk ** ’188...ø.’

0018 0206 line 2: record type 24
00 0001 0208 Control information

.... 43 bytes of static data
657461726F70726F434E4D444100011D 020B data ’...ADMNCorporate’
856E6F697461727473696E696D644120 021B data ’ Administration.’

F800008735323230300420 022B data ’ .00225...ø’

(continued on next page)

Verifying the Integrity of Your Oracle Rdb Database 5–35

Example 5–9 (Cont.) Corrupted Page 2 of the DEPARTMENTS Storage Area

.... total B-tree node size: 430
003F 2003 0236 line 1: index node for set 64

002A FFFFFFFF FFFF 023A owner 65:-1:-1
00D6 0242 214 bytes of entries
8200 0244 level 1, full suffix

00 05 0246 5 bytes stored, 0 byte prefix
4E4D444100 0248 key ’.ADMN’

1633 06 024D pointer 65:2:2
01 04 0250 4 bytes stored, 1 byte prefix

00 pfx ’.’
4C454C45 0252 key ’ELEL’

1634 06 0256 pointer 65:2:3
.
.
.

Because there appears to be valid data in this unaccounted-for gap between
offset 4E hex and offset 206 hex, you can conclude that there is something
wrong with the line index portion of the page. Example 5–10 displays the
same but uncorrupted portion of page 2. The number of lines listed is 11 in
Example 5–10, but on the corrupted page, it is 3, which shows the corruption.
To correct this problem, restore and recover page 2 of the DEPARTMENTS
area and verify it again.

5–36 Verifying the Integrity of Your Oracle Rdb Database

Example 5–10 Uncorrupted Page 2 of the DEPARTMENTS Storage Area

$ RMU/DUMP/AREAS=DEPARTMENTS /START=2 /END=2 MF_PERSONNEL
.
.
.

0005 00000002 0000 page 2, physical area 5
546CC517 0006 checksum = 546CC517

0091FAC0 9EA7B160 000A time stamp = 31-MAR-1995 09:08:02.55
0000 001E 0012 30 free bytes, 0 locked

000B 0016 11 lines
0005 03E4 0018 line 0: offset 03E4, 5 bytes
01AE 0206 001C line 1: offset 0206, 430 bytes
0030 03B4 0020 line 2: offset 03B4, 48 bytes
002F 01D6 0024 line 3: offset 01D6, 47 bytes
0031 01A4 0028 line 4: offset 01A4, 49 bytes
002E 0176 002C line 5: offset 0176, 46 bytes
0023 0152 0030 line 6: offset 0152, 35 bytes
002B 0126 0034 line 7: offset 0126, 43 bytes
0031 00F4 0038 line 8: offset 00F4, 49 bytes
0031 00C2 003C line 9: offset 00C2, 49 bytes
002A 008E 0040 line 10: offset 008E, 51 bytes

00000000 0044 line 0: TSN 0
00000028 0048 line 1: TSN 40
00000028 004C line 2: TSN 40
00000028 0050 line 3: TSN 40
00000028 0054 line 4: TSN 40
00000028 0058 line 5: TSN 40
00000028 005C line 6: TSN 40
00000028 0060 line 7: TSN 40
00000028 0064 line 8: TSN 40
00000028 0068 line 9: TSN 40
00000028 006C line 10: TSN 40

00000000000000000000000000000000 0070 free space ’................’
0000000000000000000000000000 0080 free space ’..............’

0018 008E line 10: record type 24
00 0001 0090 Control information

.... 46 bytes of static data
262074656E696261434D42434D000128 0093 data ’(..MCBMCabinet &’
7574636166756E614D20656D61724620 00A3 data ’ Frame Manufactu’

F8000087353931303020676E6972 00B3 data ’ring 00195...ø’
00 00C1 padding ’.’

(continued on next page)

Verifying the Integrity of Your Oracle Rdb Database 5–37

Example 5–10 (Cont.) Uncorrupted Page 2 of the DEPARTMENTS Storage
Area

0018 00C2 line 9: record type 24
00 0001 00C4 Control information

.... 44 bytes of static data
6E614D206472616F42534D424D00011E 00C7 data ’...MBMSBoard Man’
6874756F5320676E6972757463616675 00D7 data ’ufacturing South’

F80000873636313030042084 00E7 data ’. .00166...ø’
00 00F3 padding ’.’

.

.

.
.... total B-tree node size: 430

003F 2003 0236 line 1: index node for set 64
002A FFFFFFFF FFFF 023A owner 65:-1:-1

00D6 0242 214 bytes of entries
8200 0244 level 1, full suffix

00 05 0246 5 bytes stored, 0 byte prefix
4E4D444100 0248 key ’.ADMN’

1633 60 024D pointer 65:2:2
01 04 0250 4 bytes stored, 1 byte prefix

00 pfx ’.’
4C454C45 0252 key ’ELEL’

1634 60 0256 pointer 65:2:3
.
.
.

5.11.2 Logical Area Corruption
When a logical area (index) becomes corrupt due to a software error or system
failure, you can receive an access violation or bugcheck dump. You should
perform an RMU Verify operation and specify the Lareas qualifier to pinpoint
the problem.

Example 5–11 shows this type of problem. The problem has been traced to
page 2 in the DEPARTMENTS storage area and the verify operation will log
this page in the CPT.

When you perform an RMU Verify Larea command on all logical areas, a
page checksum bad warning message is returned. This message tells you that
information on page 2 is corrupt.

5–38 Verifying the Integrity of Your Oracle Rdb Database

Example 5–11 Page Checksum Bad Warning Message Returned from a
Checksum Verify Operation of the DEPARTMENTS Logical
Area

$ RMU/VERIFY/LAREA=* MF_PERSONNEL
%RMU-W-PAGCKSBAD, area DEPARTMENTS, page 2

contains an invalid checksum
expected: 546CCD17, found: 546CC517

To determine what other logical areas are located in the DEPARTMENTS
storage area, you can use the RMU Dump command and inspect the database
pages, or you can use the RMU Analyze Areas=Departments command to
list the logical areas. Two logical areas are in the DEPARTMENTS storage
area: the DEPARTMENTS rows and the sorted index structures for the
DEPARTMENTS_INDEX index. To pinpoint the problem, use the RMU Verify
Index command to verify this sorted index and specify the Nodata qualifier.
Example 5–12 shows that on line 3, a storage record in the B-tree node with
the prefix key ‘‘ADMN’’ contained a bad prefix key length, expected 5, found
76. The warning message indicates that the B-tree node keys are also not in
lexical or alphabetical order. These informational and warning messages show
that the DEPARTMENTS_INDEX sorted index is corrupt.

Verifying the Integrity of Your Oracle Rdb Database 5–39

Example 5–12 B-Tree Lexical Error Returned from an Index Verify Operation with No Data
Record Check

$ RMU/VERIFY/INDEX=DEPARTMENTS_INDEX /NODATA MF_PERSONNEL
%RMU-I-BTRPFXERR, area RDB$SYSTEM, page 828651012, line 3

storage record B-TREE NODE, with prefix key "ADMN"
contains a bad prefix key len, expected: 5, found: 76

%RMU-W-BTRLEXERR, b-tree node keys not in lexical order
found key ".ADMN..........!.......@...£ð,.......| Ø.â...â.k#..

l.â.ãð,.................tEL‘4...GS‘5...MC‘6...NG ‘7...MBMFa.c...Na.c...Sa.c...CB
Ma.c...S‘B...G" in b-tree node at 64:2:1

followed by key ".ADMN..........!.......@...£ð,.......| Ø.â...
â.k#..l.â.ãð,.................TG" in b-tree node at 64:2:1
%RMU-I-BTRROODBK, root dbkey of B-tree is 64:2:1
$

When you repeat the index verification and accept the default Data qualifier
to check the data record fetch, additional messages display, as shown in
Example 5–13. The first error message indicates that line index entry 5682
cannot be found; either the line index does not exist or the database key
(dbkey) pointer is wrong. Other E level messages indicate that there was an
error fetching dbkey 43:3:5682 and that the data record cannot be fetched from
the B-tree index node. The I level messages indicate that the problem is with a
B-tree node record and that there is a bad prefix key length: expected 5, found
76. The warning message indicates that the B-tree node keys are not in lexical
order.

Example 5–13 B-Tree Lexical Error Returned from a Checksum Verify Operation with a Data
Record Check

$ RMU/VERIFY/INDEX=DEPARTMENTS_INDEX MF_PERSONNEL
%RMU-E-LNGTRLNDX, line 5682 beyond line index on page
%RMU-E-BADDBKFET, error fetching dbkey 43:3:5682
%RMU-E-ERRDATFET, error fetching data record from B-tree index node
%RMU-I-BTRNODDBK, dbkey of B-tree node for data record is 64:2:1
%RMU-I-BTRPFXERR, area RDB$SYSTEM, page 828651012, line 3

storage record B-TREE NODE, with prefix key "ADMN"
contains a bad prefix key len, expected: 5, found: 76

(continued on next page)

5–40 Verifying the Integrity of Your Oracle Rdb Database

Example 5–13 (Cont.) B-Tree Lexical Error Returned from a Checksum Verify Operation with
a Data Record Check

%RMU-E-BADDBKFET, error fetching dbkey 65:828651012:3
%RMU-E-ERRDATFET, error fetching data record from B-tree index node
%RMU-I-BTRNODDBK, dbkey of B-tree node for data record is 64:2:1
%RMU-W-BTRLEXERR, b-tree node keys not in lexical order

found key ".ADMN..........9.......@...£ð,.......| Ø.â...â.k#..
l.â.ãð,.................tEL‘4...GS‘5...MC‘6...NG ‘7...MBMFa.c...Na.c...Sa.c...CB
Ma.c...S‘B...G" in b-tree node at 64:2:1

followed by key ".ADMN..........9.......@...£ð,.......| Ø.â...
â.k#..l.â.ãð,.................TG" in b-tree node at 64:2:1
%RMU-I-BTRROODBK, root dbkey of B-tree is 64:2:1
$

In Example 5–13, DEPARTMENTS_INDEX index is corrupt and the dbkey
pointer is incorrect. You can choose one of the following options:

• Restore and recover the entire database

• Restore and recover the DEPARTMENTS storage area or only page 2

• Delete the corrupt index and rebuild it

In this instance, if the dbkey pointer appears to be the problem, it may be
easier and best to delete the DEPARTMENTS_INDEX sorted index and rebuild
it. However, if you detect other problems such as other corrupt pages and
corrupted data records on this or other pages, then restore and recover the
DEPARTMENTS storage area or any corrupt pages to correct the problems.

Once you fix the problem, you can inspect and compare the information
on page 2 in the DEPARTMENTS storage area for both the corrupted and
uncorrupted pages to determine exactly what the problem was. Example 5–14
shows the corrupted portion of page 2, and Example 5–15 shows the same
portion of the uncorrupted page. On the corrupted page, the dbkey pointer
at offset 024D is 43:3:5682 followed by dbkey pointer 65:828651012:3, which
is followed by dbkey pointer 65:3:3. On the same but uncorrupt page, the
sequence of dbkeys is 65:2:2, 65:2:3, 65:2:4, and so forth. This is the reason
for the error messages: line 5682 beyond line index on page and error fetching
dbkey 43:3:5682. The dbkey 43:3:5682 does not exist.

Also, the first B-tree node key on the corrupted page is ADMN, followed by
EL, GS, NG, Na, CBMa, G, TG, and NFG. The reason for one of the warning
messages is that these B-tree node keys are not in lexical or alphabetical order.
On the uncorrupted page, these B-tree node keys are in lexical order, ADMN,
ELEL, GS, and so forth.

Verifying the Integrity of Your Oracle Rdb Database 5–41

Example 5–14 Corrupted Portion of Page 2 of the DEPARTMENTS Storage
Area

$ RMU/DUMP/AREA=DEPARTMENTS /START=2 /END=2 MF_PERSONNEL
.
.
.

.... total B-tree node size: 430
003F 2003 0236 line 1: index node for set 64

002A FFFFFFFF FFFF 023A owner 45:-1:-1
00D6 0242 214 bytes of entries
8200 0244 level 1, full suffix

00 05 0246 5 bytes stored, 0 byte prefix
4E4D444100 0248 key ’.ADMN’

01041633 68 024D pointer 43:3:5682
4C 45 0252 69 bytes stored, 76 byte prefix

801B2623000000000000004E4D444100 pfx ’.ADMN.......#&..’
000000000000A034010E00002FFC0000 pfx ’..ü/....4.......’
00077C207FE20AAC7FE20ADC2FFC0000 pfx ’..ü/Ü.â.¬.â. |..’
00000001001282E6001280B0000001AE pfx ’®...°...æ.......’

000777D40000A032001280C6 pfx ’Æ...2...Ôw..’
34604C45 0254 key ’EL‘4’
03163660434D03021635605347030216 0258 key ’...GS‘5...MC‘6..’
630861464D424D010416376020474E02 0268 key ’.NG ‘7...MBMFa.c’
0301630A61530401016309614E040101 0278 key ’...Na.c...Sa.c..’
020316426053040101630B614D424302 0288 key ’.CBMa.c...S‘B...’

47 0298 key ’G’
0316436054 56 0299 pointer 65:828651012:3

4B 02 029F 2 bytes stored, 75 byte prefix
801B2623000000000000004E4D444100 pfx ’.ADMN.......#&..’
000000000000A034010E00002FFC0000 pfx ’..ü/....4.......’
00077C207FE20AAC7FE20ADC2FFC0000 pfx ’..ü/Ü.â.¬.â. |..’
00000001001282E6001280B0000001AE pfx ’®...°...æ.......’

0777D40000A032001280C6 pfx ’Æ...2...Ôw.’
4754 02A1 key ’TG’

1644 60 02A3 pointer 65:3:3
02 03 02A6 3 bytes stored, 2 byte prefix

4100 pfx ’.A’
47464E 02A8 key ’NFG’

1645 60 02AB pointer 65:3:4
.
.
.

5–42 Verifying the Integrity of Your Oracle Rdb Database

Example 5–15 Uncorrupted Portion of Page 2 of the DEPARTMENTS Storage
Area

$ RMU/DUMP/AREA=DEPARTMENTS /START=2 /END=2 MF_PERSONNEL
.
.
.

.... total B-tree node size: 430
003F 2003 0236 line 1: index node for set 64

002A FFFFFFFF FFFF 023A owner 65:-1:-1
00D6 0242 214 bytes of entries
8200 0244 level 1, full suffix

00 05 0246 5 bytes stored, 0 byte prefix
4E4D444100 0248 key ’.ADMN’

1633 60 024D pointer 65:2:2
01 04 0250 4 bytes stored, 1 byte prefix

00 pfx ’.’
4C454C45 0252 key ’ELEL’

1634 60 0256 pointer 65:2:3
03 02 0259 2 bytes stored, 3 byte prefix

4C4500 pfx ’.EL’
5347 025B key ’GS’

1635 60 025D pointer 65:2:4
.
.
.

5.11.3 Data Integrity Corruption
Example 5–16 shows the log of an area verification. The page warning error
messages indicate a problem with the page header. In this case, the page
checksum is the problem because it is part of the page header information. All
other items checked on the page are fine. The problem may be with an index
or with data. Because there are no indexes defined on the table and there are
only 15 rows in the table, a check of the data integrity is the next logical step
in troubleshooting the problem.

Verifying the Integrity of Your Oracle Rdb Database 5–43

Example 5–16 Page Errors Returned from an Area Verify Operation of the
JOBS Storage Area

$ RMU/VERIFY/AREAS=* /LOG MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-DBBOUND, bound to database "DBDISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-OPENAREA, opened storage area JOBS for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of JOBS storage area
%RMU-W-PAGCKSBAD, area JOBS, page 2

contains an invalid checksum
expected: 13BFE1B7, found: 13BFE1C7

%RMU-W-PAGERRORS, 1 page error encountered
1 page header format error
0 page tail format errors
0 area bitmap format errors
0 area inventory format errors
0 line index format errors
0 segment format errors
0 space management page format errors
0 differences in space management of data pages

%RMU-I-ENDSEGPAG, completed verification of JOBS storage area
elapsed time : 00:00:00.62

%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:09.74
$

Example 5–17 shows that the constraint verify operation is failing to access
and read area 7, the JOBS storage area, from page 2 through 2 (7:2-2).

Example 5–17 Fatal Error Messages Returned from a Constraint Verify
Operation

$ RMU/VERIFY/CONSTRAINT MF_PERSONNEL
%RDB-F-IO_ERROR, input or output error
-RDMS-F-CANTREADDBS, error reading pages 7:2-2
-RDMS-F-CHECKSUM, checksum error - computed 13BFE1B7, page contained 13BFE1CF

To investigate further, you can define the RDMS$DEBUG_FLAGS logical name
as ‘‘Sn’’ to display the access strategy with the constraint names and define the
RDMS$DEBUG_FLAGS_OUTPUT logical name (for OpenVMS systems) or the
RDB_DEBUG_FLAGS_OUTPUT configuration parameter (for Digital UNIX
systems) to place the results in a file, as shown in Example 5–18. Specify the

5–44 Verifying the Integrity of Your Oracle Rdb Database

Log and Output qualifiers to direct the output from the constraint verification
to a file. Remember to deassign both logical names when you have completed
this constraint verify operation.

Example 5–18 Tracing the Corruption to a Set of Constraints

$ DEFINE RDMS$DEBUG_FLAGS "Sn"
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT CONSTRAINT_CK.LIS
$ RMU/VERIFY/CONSTRAINT /LOG /OUTPUT=MFPERS_CONSTRAINT_CK.LIS MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-BGNVCONST, beginning verification of constraints for database
"DBDISK:[MFPERS]MF_PERSONNEL.RDB;1"

.

.

.
~S: Constraint name JOBS_PRIMARY_JOB_CODE
Cross block of 2 entries

Cross block entry 1
Get Retrieval sequentially of relation JOBS

Cross block entry 2
Conjunct Aggregate-F2 Conjunct Get
Retrieval sequentially of relation JOBS

%RDB-F-IO_ERROR, input or output error
-RDMS-F-CANTREADDBS, error reading pages 7:2-2
-RDMS-F-CHECKSUM, checksum error - computed 25211595, page contained 252115A5
%RMU-I-ENDVCONST, completed verification of constraints for database
"DBDISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-DBBOUND, bound to database "DBDISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:01:09.53
$ DEASSIGN RDMS$DEBUG_FLAGS_OUTPUT
$ DEASSIGN RDMS$DEBUG_FLAGS

In Example 5–18, the constraint Verify operation stops at the point where
the JOBS table is being accessed and the JOBS_PRIMARY_JOB_CODE
constraint is the last constraint to be verified without errors. This indicates a
problem with the data being validated for the constraints defined for the JOBS
table and specifically the very next constraint. From Example 5–6, you can
determine that the constraint that was being verified when the error displayed
was WAGE_CLASS_VALUES. Take note of the area and pages being read
when the constraint verify operation stopped. That is, the error states error
reading pages 7:2-2. When you check the JOBS table constraint definitions,

Verifying the Integrity of Your Oracle Rdb Database 5–45

you find the constraint named WAGE_CLASS_VALUES is a column-level
constraint that checks for valid values for the WAGE_CLASS column, which
are 1, 2, 3, 4, or NULL. The problem is with one of the column-level constraint
values (in the WAGE_CLASS column) for a row stored on this page. At this
point, try to identify the exact problem by displaying the page. Example 5–19
displays 2 of the 15 rows in the JOBS table.

Example 5–19 Corrupted Portion of Page 2 of the JOBS Storage Area
.
.
.

0017 0198 line 15: record type 23
00 0001 019A Control information

.... 34 bytes of static data
65725020656369563444535056000114 019D data ’...VPSD4Vice Pre’
E4E1C0007270E0082085746E65646973 01AD data ’sident. .àpr.Àáä’

E000 01BD data ’.à’
00 01BF padding ’.’

0017 01C0 line 14: record type 23
00 0001 01C2 Control information

.... 37 bytes of static data
20736D6574737953244D475053000123 01C5 data ’#..SPGM$Systems ’
002625A0202072656D6D6172676F7250 01D5 data ’Programmer .%&.’

E0004C4B40 01E5 data ’@KL.à’
.
.
.

Because the JOBS table is small (15 rows), it becomes relatively easy to isolate
the problem. The primary key values for JOB_CODE, beginning at offsets
01A0 and 01C8 respectively, are VPSD and SPGM, which are both valid
values. However, for the WAGE_CLASS column, the 4 and $ values display at
offsets 01A4 and 01CC respectively. The value $ is not a valid value. This is
the point of the corruption.

The best corrective measure is to use SQL to delete the row and add the row
again, or try and update the WAGE_CLASS column value for that row. If you
were to restore and recover the area or page, you might not correct the problem
if it has persisted for some time. You would have to locate an uncorrupt backup
file.

After you have made the correction, verify the JOBS storage area, as shown in
Example 5–20. Note that the area verification of the JOBS storage area was
successful.

5–46 Verifying the Integrity of Your Oracle Rdb Database

Example 5–20 Verifying the JOBS Storage Area

$ RMU/VERIFY/AREAS=JOBS /LOG MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-DBBOUND, bound to database "DBDISK:[MFPERS]MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-OPENAREA, opened storage area JOBS for protected retrieval
%RMU-I-BGNSEGPAG, beginning verification of JOBS storage area
%RMU-I-ENDSEGPAG, completed verification of JOBS storage area

elapsed time : 00:00:00.27
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:13.11

Example 5–21 shows a display of page 2 of the JOBS storage area to determine
what the valid value for line 14 at offset 01CC should be. Note the WAGE_
CLASS value is 4.

Example 5–21 Uncorrupted Portion of Page 2 of the JOBS Storage Area
.
.
.

0017 01C0 line 14: record type 23
00 0001 01C2 Control information

.... 37 bytes of static data
20736D6574737953344D475053000123 01C5 data ’#..SPGM4Systems ’
002625A0202072656D6D6172676F7250 01D5 data ’Programmer .%&.’

E0004C4B40 01E5 data ’@KL.à’
.
.
.

Examples 5–18, 5–19, and 5–20 pinpoint simple constraint verification
problems. In reality, it may take considerably more effort to track down
the actual constraint or set of constraints where the problem exists. It is best
to track the problem to a row or group of rows to try to determine what caused
the problem.

Verifying the Integrity of Your Oracle Rdb Database 5–47

There are several important points to keep in mind when you are verifying
constraints for your database. With multiple tables, you can define the
following logical names and configuration parameters to help you identify
problem areas:

• RDMS$DEBUGS_FLAGS and RDMS$DEBUGS_FLAGS_OUTPUT for
OpenVMS systems

• RDB_DEBUGS_FLAGS and RDB_DEBUGS_FLAGS_OUTPUT for Digital
UNIX systems

Because the actual constraint in which the problem exists is never identified,
you must identify it yourself. The constraint verify operation stops once an
error is detected. More precisely, it stops on the page where the checksum is
invalid. Note the name of the last constraint that successfully verified from
the failed RDMS$DEBUGS_FLAGS_OUTPUT or RDB_DEBUGS_FLAGS
log, then refer to your successful RDMS$DEBUGS_FLAGS_OUTPUT or
RDB_DEBUGS_FLAGS_OUTPUT log to determine the name of the very next
constraint; this is always the one that failed verification.

You must identify the exact problem or problems on the page to prevent them
from recurring. For example, is the problem due to a poorly defined trigger
definition, an abnormal image termination during a batch-update transaction,
a software error, or some other problem? By locating the exact problem, you
can trace the cause. If you cannot determine the exact cause and restore the
storage area, the problem may recur. The invalid value you find for a specific
column in a specific row for a specific table provides you with clues. Is the
value that is corrupted due to a random error or is it changing each time?

You can also pinpoint constraint problems by forming queries on the affected
table. You can access and read all rows or a specific row and read specific
columns for which constraints are defined. A data integrity problem with a
specific column for a specific row in the table produces an access violation and
bugcheck dump. This information can be useful for pinpointing problems too.

In cases where the database has more that a single failed constraint problem,
you will not know this until you verify and solve the first failed constraint
verification problem. The constraint verify operation detects only the first
constraint that failed, produces an error message, and stops. If your database
shows more than one checksum error, note each one.

If you pinpoint the problem as a data integrity problem, you must solve the
first problem shown by correcting the problem and performing a constraint
verify operation. In recursive fashion, you pinpoint the next data integrity
problem, correct it, and perform a constraint verify operation, and so forth.

5–48 Verifying the Integrity of Your Oracle Rdb Database

Finally, when you have corrected all data integrity problems and you have
performed one last successful constraint verify operation, then you can be
certain that all affected storage areas have data integrity. Thus, if you have
multiple data integrity problems in your database, each must be detected,
corrected, and verified.

Verifying the Integrity of Your Oracle Rdb Database 5–49

6
Repairing or Altering a Database

This chapter briefly describes the RMU Repair command to repair specific
types of database problems and explains how to use the RMU Alter command,
which invokes the RdbALTER utility to patch a database or move it from one
device to another.

6.1 Using RMU Repair
You can use the RMU Repair command to correct the following database
problems:

• To repair all types of space area management (SPAM) page corruption by
reconstructing the SPAM pages in one or more storage areas

• To repair all area bit map (ABM) page format errors

• To repair all page tail errors to the satisfaction of the RMU Verify command

This is done by making sure that every database page is in a logical area
and contains the appropriate information for that logical area.

• To correct some performance problems without having to export and import
the database

• To initialize free database pages that contain no data for tables in uniform
storage areas

• To create and initialize snapshot (.snp) files

• To initialize the transaction sequence numbers (TSNs) to zero in a database

• To update the area inventory page (AIP) for specified logical areas before
building SPAM pages

Update information can include new SPAM thresholds for logical areas in
uniform storage areas, marking a logical area as deleted, or specifying a
different record length to store in a logical area inventory entry.

• To initialize .snp files, relocate them, and change their allocation

Repairing or Altering a Database 6–1

• To set null those columns that are found to contain damaged or missing list
segments

Damaged or missing list segments may be due to the after-image journal
(.aij) file not being enabled for a write-once area on a write-once, read-many
(WORM) device and the data becoming inconsistent because of a WORM
disk failure that cannot be recovered.

The RMU Repair command cannot correct problems such as checksum errors,
corrupted user data, or corrupted indexes. Use the RMU Alter command
described in Section 6.2 and in the Oracle RMU Reference Manual to correct
these problems.

Oracle Rdb recommends that you back up your database or have an exported
copy of your database before attempting to repair your database in the event
that the repair operation is not effective. Because repair operations to the
database are not journaled in the .aij file and so cannot be rolled forward
with the RMU Recover command, Oracle Rdb also recommends that you back
up your database following a repair operation. Because the database is not
flagged as having been repaired in the database root file (.rdb) or database
backup file (.rbf), you must assume responsibility for keeping a record of all
repair operations.

You must have complete and exclusive access to the database to use the RMU
Repair command. For a complete description of the RMU Repair command,
privileges required, and examples, see the Oracle RMU Reference Manual.

6.2 Using RdbALTER
Oracle Rdb recommends that you use the RMU Alter command only under the
following conditions:

• To make the database available for further investigation of a problem

• To facilitate permanent error correction activity, such as exporting the
database by using the SQL EXPORT statement, using the RMU Extract
command to extract database information, or using the RMU Unload
command to unload data

• To make the database temporarily available until permanent corrective
action can be scheduled

Correct use of the RMU Alter command for permanent repairs requires a
very detailed understanding of Oracle Rdb software, of the database design,
and of the current state of the database. Moreover, it is rare that a database
corruption problem is a single-point data corruption. Problems that generate
database corruptions frequently create multiple corruptions in the database

6–2 Repairing or Altering a Database

that must be located and corrected. Database corruption that goes undetected
for some time frequently introduces secondary related corruptions elsewhere in
the database.

With these recommendations in mind, you can use the RdbALTER utility to
perform the following tasks:

• Perform low-level patching of corrupted data storage or space area
management (SPAM) pages.

• Move database root, area, and snapshot files (in conjunction with the
operating system Copy command).

• Move files from one disk to another or from one directory to another on the
same disk.

• Make low-level changes to the data or pointers.

You cannot use RdbALTER to alter journal files.

You should use RdbALTER on a working database only if the following
conditions exist:

• You fully understand the internal data structures and access mechanisms
of a database storage area page (Chapter 12 describes page structurein detail).

• You know the information the database should contain.

• The problems are specific, local, and few.

To patch database pages, perform the following steps:

1. Use the RMU Verify command to locate the source of database corruption.

2. Display the contents of the corrupt storage area by using the RMU Dump
command.

You might also need a complete display of the database header (use
RMU Dump Header) to obtain the internal ID numbers for storage
areas, logical areas, and records. (Refer to Chapter 11 and the
Oracle RMU Reference Manual for more information on using the RMU
Dump command.)

3. Once you locate the source of corruption, determine the correct contents of
the corrupted page.

If the problem occurs because of a corrupt database key (dbkey) pointer,
determine the correct dbkey pointer. If the problem occurs because of
corrupt data, determine the correct data that belongs on that page.

Repairing or Altering a Database 6–3

4. After you locate the source of the corruption and determine the correction
that must be made, use the RMU Alter command to invoke the RdbALTER
utility.

5. Use RdbALTER commands to patch the database.

Usually, restoring a database from recovery-unit journal (.ruj) and .aij files
offers a more simple and sure remedy. However, some database structure
problems are not apparent until long after they have occurred. Recent backup
files might carry the same errors, making the restore and recovery techniques
ineffective. (The database backup utility displays a message indicating
corruption only if that corruption was caused by a batch-update operation.)

Direct altering of pages is an error-prone procedure that can compound the
problem, if misused. Always use the RdbALTER Log command to create a log
file of the RdbALTER session when you alter a production database. If you
make a mistake, you can use the log file to retrace your steps. If you realize
you made a mistake during the current RdbALTER session, simply roll back to
undo all the changes. The altered pages are not written to the database until
you issue the Commit command.

If you want to add comments to RdbALTER commands, you can use an
exclamation point (!) as the comment delimiter. RdbALTER ignores any text
you type after the exclamation point. Pressing the Return key marks the end
of a command. Events causing informational messages are not considered
errors and do not terminate the command line.

The following sections describe the functions of RdbALTER commands and
explain when and why to use them.

6.2.1 Attaching to a Database
To access a database, enter the RdbALTER environment, using the RMU Alter
command:

$ RMU/ALTER
RdbALTER>

At the RdbALTER prompt, type the Attach command to attach to a database.
The syntax for the Attach command is as follows:

Attach root-file-spec

The database that you specify with the root-file-spec parameter is now attached
to RdbALTER. You can perform an implicit attach to the database by specifying
the root file on the RMU Alter command line. You can then alter the pages of
its storage area (.rda) files.

6–4 Repairing or Altering a Database

When you attach to the database, RdbALTER fetches page 1 of the first
storage area. You can select a different storage area and page by using the
Area . . . Page or Page commands. After you enter a Commit or Rollback
command, type the Detach command to terminate database access. During the
interval of time between the Attach and Detach commands, you have Exclusive
Update privilege for the attached database. Although you can access many
databases during an RdbALTER session, you can attach to only one database
at any one time.

If you specify a database root file (.rdb) in the RMU Alter command line, that
database is attached as part of RdbALTER startup. In this case, a separate
Attach command is unnecessary. Otherwise, no commands changing database
pages are allowed until an Attach command naming that database is issued.

6.2.2 Clearing a Corruption Flag
Note

Oracle Corporation recommends that you discontinue using the
RdbALTER Uncorrupt command. The RMU Set Corrupt_Pages
Consistent command replaces the RdbALTER Uncorrupt command.
The RMU Set Corrupt_Pages Consistent command makes a page, area,
or all areas on a disk consistent.

When a storage area’s corruption indication flag has been triggered as a result
of a batch-update transaction failure, you need to reset the corruption flag
manually. Use the Uncorrupt command to reset the storage area’s corruption
indication flag (Filid Corrupt_Flg). Then you can access the uncorrupted
sections of a corrupted storage area. The format for the Uncorrupt command
follows:

Uncorrupt storage-area-name

You can specify a storage area of the current database either by the storage
area name (the name given by the Area clause in the database) or by the
storage area number (assigned when the database is created and shown on the
first line of a page display).

Storage areas are most often corrupted if rollbacks cannot occur and updates
cannot be undone. Because there is no .ruj file for a batch-update transaction,
the update cannot be undone, which sets the corruption flag.

Repairing or Altering a Database 6–5

The Uncorrupt command lets you access a database that is in an uncertain
condition. Accordingly, you see the following message when you enter the
Uncorrupt command for a corrupt database (for example from a failed batch-
update transaction):

RdbALTER> UNCORRUPT 1

***** WARNING! *****

BEWARE ATTEMPTING TO UNCORRUPT A STORAGE AREA
WITHOUT FIRST VERIFYING IT USING THE RMU/VERIFY
COMMAND.

AN RdbALTER ROLLBACK COMMAND WILL LEAVE THIS
AREA MARKED CORRUPT.

Area RDB$SYSTEM now marked uncorrupt.

6.2.3 Selecting the Area Page for Altering
When you attach to a database, RdbALTER automatically makes storage
area 1 the current storage area and page 1 of that storage area the current
page. To work on any other storage area and page, use the Area . . . Page
command.

If you specify Area but not Page, RdbALTER makes the storage area you
specify current and fetches page 1 of that storage area. If you specify both
Area and Page, RdbALTER makes the storage area you specify current and
fetches the page you specify from the new current storage area. You can specify
a storage area of the current database by the storage area name (the name
specified in the Area clause in the database):

RdbALTER> AREA EMPIDS_LOW

You can also specify a storage area by the storage area number (assigned when
the database is created and shown on the first line of a page display):

RdbALTER> AREA 2

If you specify a storage area that does not exist, you receive an error message.
When requesting a storage area, you can also specify the page to be altered.
Express the page as a decimal integer from 1 to the number of pages in
the storage area. For example, to select page 100 of storage area 3 use the
following command:

RdbALTER> AREA 3 PAGE 100

6–6 Repairing or Altering a Database

RdbALTER can access only one page of one storage area at a time. You can
fetch a page from the current storage area with the Page command. The
format for the Page command follows:

Page [page-number]

The page number identifies a page to be altered in the current database
storage area. If you issue Page without a page number, RdbALTER fetches the
next page. If you issue Page without a page number and you are already at
the highest numbered page of the storage area, RdbALTER fetches page one.
If you specify a storage area or page that does not exist, you receive an error
message.

You can use the RMU Dump command to obtain a list of the storage area,
page, and record numbers for the database. For example, to obtain a list for
the mf_personnel database, enter the following command:

$ RMU/DUMP/OPTIONS=DEBUG/OUTPUT=MFPERS_DUMP.LIS MF_PERSONNEL

This RMU Dump command produces a database list that includes storage area
ID numbers for the mf_personnel database, and it writes the list to a file called
mf_pers_dump.lis. For example, the EMPIDS_LOW storage area has an area
ID of 2.

The contents of the output file are similar to the output you receive with the
RMU Dump Header command with the exception that internal information
about the data is not displayed with the RMU Dump command. This
information displays with the Options=Debug qualifier and is useful for
diagnostic support.

You can also use the RMU Dump command to obtain a display of the contents
of selected database storage and logical areas that includes logical area ID
numbers and record types. The storage area display helps you determine
which records are stored on which pages. For example, to see a display of the
EMPIDS_LOW storage area of the mf_personnel database, use the following
command:

$ RMU/DUMP/AREAS=EMPIDS_LOW /START=1/END=2 -
_$ /OUTPUT=EMPIDS_LOW_DUMP.LIS MF_PERSONNEL

This RMU Dump command writes the EMPIDS_LOW area of the mf_personnel
database to a file named EMPIDS_LOW_DUMP.LIS. The contents of the file
EMPIDS_LOW_DUMP.LIS are shown in Example 6–1.

Repairing or Altering a Database 6–7

Example 6–1 RMU Dump Command to Display Contents of the EMPIDS_LOW Storage Area

$ RMU/DUMP/AREAS=EMPIDS_LOW /START=1 /END=2 /OUTPUT=EMPIDS_LOW_DUMP.LIS -
_$ MF_PERSONNEL

.

.

.
00000000000000000000000000000000 0090 free space ’................’

:::: (2 duplicate lines)
0000000000000000000000000000 00C0 free space ’..............’

001D 00CE line 14: record type 29
00 0001 00D0 Control information

.... 38 bytes of static data
0B46C000474E454D3039313030000124 00D3 data ’$..00190MENG.ÀF.’
474D5250008696563C2A800000839052 00E3 data ’R.....*<V...PRMG’

C03931333030 00F3 data ’00319À’
00 00F9 padding ’.’

.

.

.
0042 2005 02AE line 5: bucket for hash index 66

.... total hash bucket size: 51
FFFF FFFFFFFF FFFF 02B2 bucket overflow -1:-1:-1

00 02BA flags 0
00000004 02BB duplicate count 4

FFBE 00000002 0007 02BF duplicate node 66:2:7
06 02C7 key len: 6 bytes

353631303000 02C8 key: ’.00165’
00000004 02CE duplicate count 4

FFBE 00000002 000C 02D2 duplicate node 66:2:12
06 02DA key len: 6 bytes

303931303000 02DB key: ’.00190’
35 02E1 padding ’5’

.

.

.
003A 2005 035C line 2: bucket for hash index 58

.... total hash bucket size: 51
FFFF FFFFFFFF FFFF 0360 bucket overflow -1:-1:-1

00 0368 flags 0
00000001 0369 duplicate count 1

003F 00000002 0001 036D pointer 63:2:1
06 0375 key len: 6 bytes

353631303000 0376 key: ’.00165’
00000001 037C duplicate count 1

003F 00000002 0003 0380 pointer 63:2:3
06 0388 key len: 6 bytes

303931303000 0389 key: ’.00190’
35 038F padding ’5’

(continued on next page)

6–8 Repairing or Altering a Database

Example 6–1 (Cont.) RMU Dump Command to Display Contents of the EMPIDS_LOW
Storage Area

001A 0390 line 1: record type 26
00 0001 0392 Control information

.... 71 bytes of static data
0420886874696D53353631303000010B 0395 data ’...00165Smith. .’
6E655420303231440D20847972726554 03A5 data ’Terry. .D120 Ten’
75726F636F684307209F2E7244207962 03B5 data ’by Dr.. .Chocoru’
4932C0004D3731383330484E12208B61 03C5 data ’a. .NH03817M.À2I’

00F032006B0E77 03D5 data ’w.k.2.’

2001 03DC line 0: SYSTEM record
02 000E 03DE 14 bytes in 2 sets/dynamic items
003A 06 03E1 6 bytes, storage set type 58

12 2E 03E4 next 58:2:2
00 03E6 owner 57:2:0

0042 07 03E7 7 bytes, storage set type 66
0095 5B 03EA next 66:2:5

00 03ED owner 57:2:0

FFFFFFFF 03EE snap page pointer -1
00000028 03F2 snap pointer TSN 40

00000000000000000000 03F6 MBZ ’..........’
00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

.

.

.

Example 6–1 shows selected parts of pages 1 and 2 of the EMPIDS_LOW
storage area of the sample mf_personnel database. Page 1 is a SPAM page.
When you display a data page such as page 2, you find the following:

• Oracle Rdb assigns ID numbers to logical areas. Logical areas are assigned
to tables and indexes.

• Oracle Rdb assigns rows record-type identifiers according to the order in
which tables are created in the database.

For example, page 2 contains logical area IDs 58 (JOB_HISTORY_HASH
hashed index), 50 (EMPLOYEES_HASH hashed index), 55 (EMPLOYEES
table), and 49 (System record), and the following record types, record type 25
(JOB_HISTORY rows) and record type 22 (EMPLOYEES rows).

Use the Area . . . Page commands in the RdbALTER environment to follow
dbkey pointers. To display the first record on page 2 of the EMPIDS_LOW
storage area (from line 1 on page 2 of area 2), enter the commands shown in
Example 6–2.

Repairing or Altering a Database 6–9

Example 6–2 Display of Line 1 of Page 2 in Area 2 (EMPIDS_LOW Storage
Area)

$ SET PROCESS/PRIVS=SYSPRV
$ RMU/ALTER MF_PERSONNEL
%RMU-I-ATTACH, now altering database "$DUA1:[ORION]MF_PERSONNEL.RDB;1"

RdbALTER> AREA 2 PAGE 2
RdbALTER> DISPLAY LINE 1

001A 0390 line 1: record type 26
00 0001 0392 1 byte in 0 sets/dynamic items

.... 71 bytes of static data
0420886874696D53353631303000010B 0395 data ’...00165Smith. .’
6E655420303231440D20847972726554 03A5 data ’Terry. .D120 Ten’
75726F636F684307209F2E7244207962 03B5 data ’by Dr.. .Chocoru’
4932C0004D3731383330484E12208B61 03C5 data ’a. .NH03817M.À2I’

00F032006B0E77 03D5 data ’w.k.2.’

6.2.4 Displaying Page Contents
The Display command allows you to see the entire contents of a database page
or any part of a database page with a Display command. The format for the
Display command follows:

Display [page-number] [option]

See the Oracle RMU Reference Manual for complete Display command syntax.
The page-number parameter identifies the page whose information you want to
display. The current page is the default. An individual Display command can
include only one of the following options:

• Asterisk (*)

Displays the entire page.

• Header

Displays the entire page header.

• The parameter page-number

Displays the 4-byte page number field.

• Storage-Area

Displays the 2-byte storage area identification.

• Checksum

Displays the 4-byte page checksum field.

• Time_Stamp

Displays the 8-byte timestamp field.

6–10 Repairing or Altering a Database

• Free_Space

Displays the 2-byte field indicating how much free space remains on the
page.

• Locked_Free_Space

Displays the 2-byte field indicating how much free space is allocated for
exclusive use by a recovery-unit journal.

• COUNT

Displays the 2-byte field showing the number of line index entries. If this
number is 1, the page contains only the SYSTEM record.

Note

In the following two options, the integers denoting Index and Line are
zero-based. For example, Index 0 refers to the first index, and Line 3
refers to the fourth line. The integer n is optional. The present value
of the relevant pointer is the default. References to Index and Line are
invalid if the current page is a SPAM page.

• Index n

Displays the offset field, the length field, or both, from the line index
indicated by n. For example, if you enter Display Index 3 Offset, the offset
address field from the fourth line index displays.

• Line n

Displays information from an individual storage segment. You can display
the record-type field or the entire content of the storage segment line
indicated by n.

• Data offset

Displays 1, 2, or 4 bytes of data in the radix specified. If you do not
specify a radix, the default radix is used. See the description of the Radix
command in Section 6.2.10 for information on how to set a default radix.

• Space range

Displays a specified range of SPAM entries; it is valid only if the current
page is a SPAM page. The range value can be an asterisk (*), referring to
all entries or a set of consecutive entries that you describe as follows:

lower-data-page-number[:higher-data-page-number]

Repairing or Altering a Database 6–11

Each entry on a SPAM page consists of 2 bits, containing a value 0 through
3 that represents a fullness threshold. For example, if the nth SPAM entry
contains a 2, it means that the nth data storage page in the interval has
reached a percentage of fullness greater than the second threshold for the
area, but less than or equal to the third threshold.

You can use the Display command with its option to see a variety of
information on a database page. For example, Example 6–2 shows how to
fetch page 2 of storage area 2 and display the first line on the page. Page 2
remains the current page until you specify a different page number. Likewise,
line 1 remains the current line until you specify a different line number.

6.2.5 Changing Page Contents
You can use the Deposit command to alter specified fields on the current
database page. You would usually use RdbALTER to correct a bad checksum
or change dbkey pointers. RdbALTER makes changes in virtual memory. The
changes are not actually written to the database until you enter a Commit
command.

Deposit is the default command at RdbALTER command level; if no command
follows the RdbALTER> prompt, RdbALTER automatically parses the
command line as Deposit. The general format for the Deposit command
follows:

[Deposit] { option = ascii-string }

Note

Do not issue a Deposit command immediately after a Rollback
command because a warning message will be returned indicating
that there is no current page. The Rollback command removes the
current page context. For this reason, you must specify your location
again by resetting the RdbALTER current page context, using either
a Display, Page, or Area command before you specify the Deposit
command.

The syntax of most Deposit command options is the same as the Display
command option syntax. See the Oracle RMU Reference Manual for a complete
description of the Deposit command syntax.

The ASCII-string parameter specifies the new value of the field you are
patching. The value is deposited in ASCII as entered, unless you request
otherwise in one of the following ways:

• By specifying Hexadecimal or Decimal in a prior Radix command

6–12 Repairing or Altering a Database

• By specifying Hexadecimal or Decimal in a Deposit Data command

• By enclosing ASCII data in quotation marks (" ")

Timestamps and file specifications (including the root file on attach) must
always be enclosed in quotation marks because they include punctuation
characters. Specify the field to be patched just as you would specify a field to
be displayed. See the Display command description in Section 6.2.4 for further
information on field specification.

The patch field specification must be followed by an equal sign (=) and a string
of characters specifying the new value of the patched field.

Whenever you alter something on a page, that page’s checksum changes. To
repair some bad data or a dbkey pointer, for instance, you must perform the
following tasks:

1. Deposit the correct data or the correct dbkey pointer.

2. Verify the page to make sure its format is correct and to get the new
checksum.

3. Deposit the correct checksum.

4. Verify the changes.

5. Commit the changes.

The following procedure demonstrates how to recover from the corruption of
data on a database page using RdbALTER:

1. Verify the data page to get the new checksum.

2. Deposit the new checksum value on the data page in order to change the
erroneous checksum.

3. Verify the data page again.

To corrupt a database page and to fix the corruption, do the following:

1. Verify the database with the RMU Verify All command to be certain the
database is not corrupt:

$ RMU/VERIFY/ALL/LOG MF_PERSONNEL

The absence of warning messages indicates that the database is not
corrupt.

Repairing or Altering a Database 6–13

2. Corrupt the page by using the Deposit command to change Terry Smith’s
name to Jerry Smith in area 2 (EMPIDS_LOW), page 2, line 1, as shown in
Example 6–3. You must set the Radix to Hexadecimal to enter the values
in hexadecimal.

Example 6–3 Changing Data on Page 2 in the EMPIDS_LOW Storage Area

$ RMU/ALTER MF_PERSONNEL
%RMU-I-ATTACH, now altering database "$DUA1:[ORION]MF_PERSONNEL.RDB;1"

RdbALTER> AREA 2 PAGE 2
RdbALTER> DISP LINE 1

001A 0390 line 1: record type 26
00 0001 0392 1 byte in 0 sets/dynamic items

.... 71 bytes of static data
0420886874696D53353631303000010B 0395 data ’...00165Smith. .’
6E655420303231440D20847972726554 03A5 data ’Terry. .D120 Ten’
75726F636F684307209F2E7244207962 03B5 data ’by Dr.. .Chocoru’
4932C0004D3731383330484E12208B61 03C5 data ’a. .NH03817M.À2I’

00F032006B0E77 03D5 data ’w.k.2.’
RdbALTER> RADIX HEXADECIMAL
RdbALTER> DEPOSIT DATA /BYTE 03A5=4A
RdbALTER> DISP LINE 1

001A 0390 line 1: record type 26
00 0001 0392 1 byte in 0 sets/dynamic items

.... 71 bytes of static data
0420886874696D53353631303000010B 0395 data ’...00165Smith. .’
6E655420303231440D2084797272654A 03A5 data ’Jerry. .D120 Ten’
75726F636F684307209F2E7244207962 03B5 data ’by Dr.. .Chocoru’
4932C0004D3731383330484E12208B61 03C5 data ’a. .NH03817M.À2I’

00F032006B0E77 03D5 data ’w.k.2.’

3. Verify the page, using RdbALTER to determine the new checksum value
shown in Example 6–4.

Example 6–4 Page Verification Using the RdbALTER Utility Returns a
Checksum Error

RdbALTER> VERIFY
%RMU-W-PAGCKSBAD, area EMPIDS_LOW, page 2

contains an invalid checksum
expected: 7876961C, found: 7876A01C

4. Using RdbALTER, deposit the expected checksum value, 192892E5.

5. Display the header for page 2 to confirm the change.

6. Verify page 2 again, as shown in Example 6–5.

6–14 Repairing or Altering a Database

Note that checksums must be expressed in Hexadecimal, so you must first
use the Radix command to indicate Hexadecimal radix.

Example 6–5 Depositing a New Checksum on Page 2 in the EMPIDS_LOW Storage Area

RdbALTER> DEPOSIT CHECKSUM = 7876961C
RdbALTER> DISPLAY HEADER

0002 00000002 0000 page 2, area 2
7876961C 0006 checksum = 7876961C

009723ED 1EC8B380 000A time stamp = 8-SEP-1993 16:24:41.40
0000 003E 0012 62 free bytes, 0 locked

000F 0016 15 lines
RdbALTER> VERIFY
RdbALTER>

Because no error message displays, the page verification is successful. At
this point, no changes have been written to the database page until you
commit the change by using the RdbALTER Commit command. You also
have the option of discarding these changes with a Rollback command.

In a more realistic situation, you might receive results from an RMU
Verify command that indicate corruption in area EMPIDS_LOW (2) due
to an invalid checksum. From these results, the RMU Verify command
indicates what the checksum should be, as well as what it currently is.
Then you enter RdbALTER and use the Attach command to attach to
the mf_personnel database and investigate the problem by inspecting the
contents of the page.

7. Enter the Commit command, as follows:

RdbALTER> Commit

8. Exit from RdbALTER and check your work with the RMU Verify command,
as follows:

RdbALTER> Exit
$ RMU/VERIFY/ALL/LOG MF_PERSONNEL

If no error messages display from the full verify operation, then your
changes are sound and the database is not corrupt.

Repairing or Altering a Database 6–15

6.2.6 Moving Database Files
If you are expanding the system from one node to a cluster, or if a storage
area has grown too large for its current storage device, or if you want to move
database files, use one of the RMU utilities. Oracle Rdb recommends that you
either:

• Use the RMU Move_Area command to relocate storage area files or use the
RMU Copy_Database command to perform total database relocation.

Note

You must perform a full backup operation immediately after you
perform an RMU Move_Area or RMU Copy_Database operation.
This is because, if parameters are changed during the move or copy
operation, the restore and recover operations might not be able to
recreate the database correctly.

Neither command requires intermediate media nor the restoration of the
.rbf file, and for either command, the operation is performed more quickly
than any alternative operation.

• Use the RMU Backup and RMU Restore commands to relocate database
files, but this requires intermediate media or a restore operation of the .rbf
file.

• If the database root file (.rdb) needs to be updated for some reason, consider
using the RMU Restore Only_Root command.

You should consider using the Deposit command only as a last resort and only
if you cannot use an existing RMU command (such as RMU Move_Area, RMU
Copy_Database, RMU Backup and RMU Restore, and RMU Backup and RMU
Restore Only_Root) to do the task you have planned. For example, if you need
to change a system-concealed logical name or change a reference to a disk
drive in the root file because the name is no longer correct due to a disk drive
problem, you can use the Deposit command. However, use the RMU Restore
Only_Root command in either case.

See Chapter 8 and the Oracle RMU Reference Manual for more information
on using these commands. See Section 6.2.8 for another example of using the
Deposit Root command.

6–16 Repairing or Altering a Database

Note

Exercise caution when working with multifile databases. All modified
file specifications in the root file must exactly match all new database
file locations for the database to be usable.

6.2.7 Moving Data
The following syntax shows how you can use the Move command to move a
string of data to a different location on the page:

Move old-offset-start : old-offset-end new-offset

The old-offset-start and old-offset-end parameters specify the hexadecimal
offset addresses of the first and last bytes in the data sequence to be moved.
The new-offset parameter specifies the hexadecimal offset address of the first
byte in the sequence of bytes that receives the moved data.

The receiving field, defined by the new-offset parameter and the length of the
sending field, is replaced by the contents of the sending field. The number of
bytes moved is presented as follows:

(old-offset-end) - (old-offset-start) + 1

The sending field and all other information in the page remain the same.

Offset addresses are discussed more fully in Chapter 11.

The following procedure provides an example of using the Move command for
a situation that may rarely happen. In fact, with problems such as this, the
recommended action for checksum errors is to restore and recover the page
that contains an invalid checksum. This example is only for illustration of the
Move command. In Example 6–6, a database page is verified and returns an
invalid checksum for a database page.

Repairing or Altering a Database 6–17

Example 6–6 Checksum Error Returned from a Full Verification

$ RMU/VERIFY/ALL MF_PERSONNEL
%RDB-F-IO_ERROR, input or output error
-RDMS-F-CANTREADDBS, error reading pages 8:3-3
-RDMS-F-CHECKSUM, checksum error - computed 967AC1E7, page contained 1B4DA010
%RMU-W-PAGCKSBAD, area EMP_INFO, page 3

contains an invalid checksum
expected: 967AC1E7, found: 1B4DA010

%RMU-E-CORRUPTPG, Page 3 in area EMP_INFO is marked as corrupt.

An inspection of the checksum error message shows that the problem occurs in
area 8 (EMP_INFO) on page 3 and indicates that data on the database page
has changed in some way. A more detailed view of the data page (Example 6–7)
shows that there are ** overlap ** error messages within line entry 5. This
message usually indicates that data is no longer found where the line index
offset address indicates that it should be.

Use the following steps to inspect the contents of page 3:

1. Check the line index entries and note that line 5 starts at HEX 00EE and
is 30 bytes long.

2. Check the actual record for entry 5.

3. Perform the following series of checks on entry 5:

a. Note that the record type indicates 256, but the record is a DEGREES
record.

b. On page 3, line 21, you determine that a DEGREES record is a record
type 32 (HEX 20).

c. The actual record length is 25 bytes plus 5 bytes of overhead for a total
of 30 bytes, which corresponds with the line index entry of 30 bytes.
However, information is missing, such as the number of bytes of static
data. Also, extra information displays such as the number of bytes,
storage set type 12288, next record, and owner record.

d. One byte, HEX 20, is in free space where no bytes should be displayed.
The value HEX 20 is decimal 32. This seems to be the actual record
type identifier, but offset by 1 byte.

e. Check to see if the complete record exists. The record appears to be
intact except that the last byte is repeated twice, so the record appears
to be offset by 1 byte into free space. This means the record must be
moved back to the real starting offset address indicated in line index 5
as HEX 00EE.

6–18 Repairing or Altering a Database

Example 6–7 Display of Page 3 of the EMP_INFO Storage Area

$ RMU/ALTER MF_PERSONNEL
%RMU-I-ATTACH, now altering database "DUA12:[DB]MF_PERSONNEL.RDB;1"

RdbALTER> AREA 8 PAGE 3
RdbALTER> RADIX HEXADECIMAL

0008 00000003 0000 page 3, physical area 8
1B4DA010 0006 checksum = 1B4DA010

009723ED 1EC8B380 000A time stamp = 8-SEP-1993 16:24:41.40
0000 0026 0012 38 free bytes, 0 locked

0016 0016 22 lines
.
.
.

001E 00EE 002C line 5: offset 00EE, 30 bytes
.
.
.

001E 010C 006C line 21: offset 010C, 30 bytes
.
.
.

00500050005000500050005000500050 00C8 free space ’P.P.P.P.P.P.P.P.’
00000050005000500050005000500050 00D8 free space ’P.P.P.P.P.P.P...’

200000000000 00E8 free space ’..... ’

0100 00EE line 5: record type 256
13 0000 00F0 Control information
3000 01 00F3 1 byte, storage set type 12288
3631 30 00F6 next 11:3:1590

544142 35 00F9 owner 12:7:327
==== ** overlap **

3030 00 00F4 0 bytes, storage set type 12336
423536 31 00F7 next 10:3:13627
B44554 41 00FB owner 12:17751:5

==== ** overlap **
.
.
.

(continued on next page)

Repairing or Altering a Database 6–19

Example 6–7 (Cont.) Display of Page 3 of the EMP_INFO Storage Area

3030 00 00F4 0 bytes, storage set type 12336
423536 31 00F7 next 10:3:13627
B44554 41 00FB owner 12:17751:5

==== ** overlap **
==== ** overlap **

00E0 010C line 21: record type 224
00 0001 010E Control information

.... 25 bytes of static data
414207BA44574F423537313030000113 0111 data ’...00175BOWDº.BA’

E000208A7374724120 0121 data ’ Arts. .à’
.
.
.

001F 03A8 line 1: record type 31
00 0001 03AA Control information

.... 54 bytes of static data
756F5320666F202E5541435355000129 03AD data ’)..USCAU. of Sou’
61696E726F66696C6143206E72656874 03BD data ’thern California’
414307208873656C65676E4120736F4C 03CD data ’Los Angeles. .CA’

E03733303239 03DD data ’92037à’
00 03E3 padding ’.’

2001 03E4 line 0: SYSTEM record
00 0001 03E6 1 byte in 0 sets/dynamic items

0000000000 03E9 padding ’.....’

00000001 03EE snap page pointer 1
00000220 03F2 snap pointer TSN 544

0000 03F6 MBZ ’..’
00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

4. Move record entry 5 back to where it is supposed to be.

5. Clean up any extraneous bytes on the database page.

Notice that free space should display all zeros, but every other byte
contains HEX 50 or decimal P. These bytes need to be reset to zeros.
Use the RdbALTER Deposit Data Byte command to modify this data by
indicating the address and value 00 to make the change. See Example 6–8
for an example.

6. Verify the page as shown in Example 6–8.

6–20 Repairing or Altering a Database

Example 6–8 Moving Contents of Line 5 to a Designated Location, Cleaning
Up Extraneous Bytes, and Verifying Storage Pages

RdbALTER> MOVE 00ED:010B 00EE
RdbALTER> DEPOSIT DATA /BYTE 00ED=00
RdbALTER> VERIFY
%RMU-W-PAGCKSBAD, area EMP_INFO, page 3

contains an invalid checksum
expected: 191D9D90, found: 1B4DC010

RdbALTER> DEPOSIT CHECKSUM =191D9D90
RdbALTER> VERIFY
RdbALTER>

If page verification indicates a page checksum error and you know the
data is correct and the remainder of the page contents are correct, reset
the page checksum to its expected value by using the Deposit Checksum
command as shown. In this example, because the page checksum does
not match exactly what it should be, some information still remains to be
corrected, but that information is not clearly apparent. This checksum
discrepancy is an excellent example of why Oracle Rdb recommends you
restore and recover database pages rather than use the RdbALTER utility
to patch data pages to avoid uncertainty.

7. If the data page verifies without errors, use the Commit command to
commit the changes.

8. Use the Exit command to exit from the RdbALTER utility.

9. Perform a full verification or at least a verification of the EMP_INFO
storage area, as shown in Example 6–9.

Example 6–9 Committing Changes, Exiting from RdbALTER, and Performing
an RMU Verify operation of the EMP_INFO Storage Area of
mf_personnel

RdbALTER> COMMIT
RdbALTER> EXIT
$ RMU/VERIFY/AREAS=EMP_INFO MF_PERSONNEL
%RMU-E-CORRUPTPG, Page 3 in area EMP_INFO is marked as corrupt.
$

10. Because page 3 is still marked as corrupt, you must reset its consistent
flag by using the RMU Set Corrupt_Page command. You must be certain
that the contents of this page are accurate before proceeding. That is, are
the contents what they should be. You should inspect the page carefully

Repairing or Altering a Database 6–21

looking for problems. Seeing none, proceed to make the page consistent
again.

$ RMU/SET CORRUPT_PAGES /CONSISTENT /AREA =8 MF_PERSONNEL

***** WARNING! *****

Marking a storage area or page consistent does not
remove the inconsistencies. Remove any inconsistencies
or corruptions before you proceed with this action.

Do you wish to continue? [N] Y
%RMU-I-AREAMARKED, Area 8 was marked consistent.

To check that this page is no longer corrupt, show the corrupt page table
(CPT) by using the RMU Show Corrupt_Pages command as follows:

$ RMU/SHOW CORRUPT_PAGES MF_PERSONNEL
*--
* Oracle Rdb V6.0-0 16-SEP-1993 16:50:23.18
*
* Dump of Corrupt Page Table
* Database: $DUA1:[ARTIE]MF_PERSONNEL.RDB;1
*
*--

Corrupt page table is empty.
$

11. When database verification returns no errors, the database is once again
ready for use.

6.2.8 Using the RMU Alter Command to Remove References to .ruj Files
The RMU Alter command allows a user to remove references to .ruj files from
the root file if one or more .ruj files are accidentally deleted; thus, allowing
access to the database. However, this action marks the database as ‘‘eternally
corrupt’’ which results in a warning message in all future system management
(RMU) functions against this database. The database is either structurally
corrupt, logically corrupt (violates a constraint), or ‘‘user data’’ corrupt (balance
is $250.00 instead of $300.00).

Using these commands to make changes permits users to attach to the
database with the realization that the database is corrupt in situations where
the .ruj files have been accidentally deleted. The database must be restored
and recovered from clean backup files in order to guarantee the consistency of
its contents.

6–22 Repairing or Altering a Database

The following RdbALTER utility syntax supports removal of .ruj file references
from the root file if any .ruj files are deleted:

Display Root User n RUJ_FILENAME

or

[Deposit] Root User n RUJ_FILENAME = filename

In the syntax examples, the variable file name can be " ".

You must specify a version number with the .ruj file name when you use this
RdbALTER utility.

To correct an ‘‘eternally corrupt’’ database, use any of the following methods:

• Restore and recover from a clean backup and .aij file.

• Export and import the database (this could result in errors).

• Unload the database, re-create the database, and load the database (this
could result in data access errors).

Only the first option (restore and recover) ensures that all types of corruption
are actually handled. The other methods may leave ‘‘user data’’ corruption.
The proper timing for changing the .aij file relative to an online incremental
or full backup operation is explained in detail in Section 9.6.1. The basic
procedure follows:

1. Close the database and restrict access.

2. Change or switch the .aij file or back up the .aij file.

3. Open the database.

4. Back up the database and allow processing to continue during the backup
operation.

6.2.9 Clearing an Inconsistent Flag
Note

Oracle Corporation recommends that you discontinue using the
RdbALTER Uncorrupt command. The RMU Set Corrupt_Pages
Consistent command replaces the RdbALTER Uncorrupt command.
The RMU Set Corrupt_Pages Consistent command makes a page, area,
or all areas on a disk consistent.

Repairing or Altering a Database 6–23

When a storage area is restored from a backup file on a per-area basis, it
does not reflect data that has been updated since the backup operation. The
transaction level of the restored storage area reflects the transaction level
of the backup file, not the transaction level of the database. Therefore, the
transaction level of the restored storage area differs from that of the database.
Oracle Rdb marks the storage area by setting a flag to ‘‘inconsistent’’ in the
storage area file.

When a storage area’s inconsistent indication flag has been triggered, you need
to do an AIJ recovery for that storage area. Only if an AIJ recovery is not
possible because the .aij file is lost, was accidentally deleted, or contains AIJ
errors, and you are willing to accept the possible corruption to the database
because recovery is not possible, should you manually reset the inconsistent
flag. Under these circumstances you can use the Make Consistent command to
reset the storage area’s inconsistent indication flag. The format for the Make
Consistent command follows:

Make Consistent storage-area-name

You can specify a storage area of the current database either by the storage
area name (the name given by the Area clause in the schema) or by the storage
area number (assigned when the database is created and shown on the first
line of a page display).

You can perform a recovery, by storage area, to upgrade the transaction level of
the restored storage area to that of the database. (After-image journaling must
be enabled in order to restore by storage area.) If you are sure that no updates
have been made to the database since the backup operation, you can use the
Make Consistent command in RdbALTER to change the setting of the flag from
inconsistent to consistent.

The Make Consistent command lets you access a database. Accordingly, the
following message is displayed when you enter the Make Consistent command:

***** WARNING! *****

BEWARE ATTEMPTING TO MAKE CONSISTENT A STORAGE
AREA WITHOUT FIRST VERIFYING IT USING THE
RMU/VERIFY COMMAND.

AN RdbALTER ROLLBACK COMMAND WILL LEAVE THIS
AREA MARKED INCONSISTENT.

6–24 Repairing or Altering a Database

6.2.10 Changing the Radix
The Radix command sets the default radix for entering numeric data to
hexadecimal or decimal. The format for the Radix command follows:

Radix { option }

The Radix command option must be either Decimal or Hexadecimal format.
Depending on which option you select, you can then enter numeric data in
either Decimal or Hexadecimal.

This command does not change the radix for specifying page offsets. Page
offsets must always be specified in hexadecimal radix.

6.2.11 Verifying Alterations
You can use the Verify command as a preliminary diagnostic tool to perform
the following tasks:

• Locate integrity problems.

• Check your alterations prior to issuing the Commit command that writes
the changes to the page.

The Verify command performs a static verification of the page header and the
page checksum. The format for the Verify command follows:

Verify

A static verification performs only a page header and page checksum
verification of the database page. The RdbALTER Verify command is similar
to an RMU Verify Areas=* Checksum_Only command, except the RdbALTER
Verify command checks only the current page and verifies the page header.

If the database uses space management and the current page is a data storage
page, RdbALTER Verify checks the SPAM entry for the current page to see that
it contains the correct value. If the current page is a SPAM page, the Verify
command checks the page for valid syntax but does not check the individual
SPAM entries for correctness. If the page is corrupt, error messages display.

6.2.12 Keeping a Log or an Audit Trail of Alterations
You can keep a log or an audit trail of all or part of an RdbALTER session
by entering a Log command. Discontinue the audit trail by entering a Nolog
command. The Log command initiates an audit trail of all terminal input and
output and writes the audit information to the file you specify. The format for
the Log command follows:

Log file-spec

Repairing or Altering a Database 6–25

You can specify the file that contains the audit trail log by using the file
specification parameter. The default file type is .lis. For example, to send the
audit information to a file named audit.lis, enter the following command:

RdbALTER> Log audit

The following command sends the audit information to the file audit.trl:

RdbALTER> Log Audit.trl

The Nolog command stops RdbALTER logging. To stop sending the audit
information to the log file, use the Nolog command as follows:

RdbALTER> Nolog

The Nolog command stops audit trail logging if a previous Log command is
still in effect. The Exit command performs an implicit Nolog operation if the
Log command is still active; thus, you need not enter a Nolog command before
exiting the RdbALTER session. You cannot exit until you enter a Commit or a
Rollback command.

6.2.13 Completing Transactions
RdbALTER stores altered pages in virtual memory until you issue a Commit
or a Rollback command. This feature allows you to perform trial page
alterations without necessarily writing them to the database. You should
use the RdbALTER Verify command to check structural integrity of the altered
page before committing changes to the database.

When you issue the Commit command, RdbALTER writes the changes into the
database. You can alter any number of pages between Commit commands. The
format for the Commit command follows:

Commit

Enter the Commit command to have all changed pages written to the database
in their new form. If you believe you have made the problem worse or decide
you cannot solve the problem with RdbALTER, enter a Rollback command.
This command cancels your alterations and does not write the changes to the
database. The format for the Rollback command follows:

Rollback

Follow Rollback commands with a Display, an Area, or a Page command to
reset the currency indicator to the desired location. You must issue either a
Commit or a Rollback command before exiting RdbALTER.

6–26 Repairing or Altering a Database

6.2.14 Exiting from the RdbALTER Utility
When you are finished altering a database, enter the Detach command. This
command releases the Exclusive Update lock for the database so other users
can access it again. The format for the Detach command follows:

Detach

You cannot alter storage areas within the database unless you attach to it
again.

After issuing the Detach command, you can issue an Exit command to return
to operating system command-line level. The format for the Exit command
follows:

Exit

After changing data, you cannot issue the Exit command from the RdbALTER
utility until you issue either a Commit or a Rollback command. This procedure
protects against accidentally changing a database instance without providing
a way to recover. Normally, control is returned to the operating system. If
you issue an Exit command, and any altered but uncommitted pages exist, a
message tells you to issue either a Commit or a Rollback command. RdbALTER
does not exit until the Commit or the Rollback operation has accounted for all
altered pages. Exit performs an implicit Nolog command if a log file is open.

6.2.15 Accessing Online Information
To access online reference information on the syntax and functions of
RdbALTER commands, use the Help command. Help provides information
about RdbALTER commands, terminology, and concepts. The format for the
Help command follows:

Help [keyword ...]

The keyword parameter specifies an RdbALTER keyword or concept.

The RdbALTER Help utility functions exactly as the OpenVMS Help Facility
does. If you enter Help with no keyword, a brief description of RdbALTER with
a list of the RdbALTER commands or keywords appears. If you enter Help
followed by a command, a brief description of the command displays with a list
of keywords you can type to obtain further information.

Repairing or Altering a Database 6–27

7
Backing Up Your Database

This chapter describes how you can safeguard your data against loss or
corruption by creating backup copies of your database files using the Oracle
RMU backup utility.

7.1 Introduction to Database Backup
A database backup utility copies the files that comprise the database to a file
located on a separate disk or tapes. If anything happens to your database
and you have backed it up regularly, you can restore the database to the state
it was in when you last backed it up. Furthermore, if you keep after-image
journal (.aij) files for the database (described in Chapter 9), you can recover
transactions made after the backup operations. Figure 7–1 shows the backup
and restore operations.

Figure 7–1 Backup and Restore Operations

NU−3574A−RA

Oracle Rdb
Database

Database restored to
previous backup state

Fully recovered

RMU Backup
Command

database

RMU Restore
Command

Backup
Tapes

After−Image
Journal Files

Backing Up Your Database 7–1

Using both database backups and after-image journaling, you can rebuild a lost
or corrupt database to its most current state by restoring the database from
the backup file and applying transactions saved in after-image journal files to
the restored copy of the database.

7.2 How Does Oracle RMU Back Up a Database?
Traditionally, a backup operation is a single-threaded application that reads
data from disk files and then writes the data to backup devices. These
sequential applications are sufficient for backing up files or directories
selectively, but often are insufficient for a database backup. Moreover, most
backup utilities require that you close the database; there can be no users
accessing the database during the backup process.

The Oracle RMU backup utility provides a sophisticated, multithreaded
backup operation designed to handle the complexities involved in backing up a
database. The Oracle RMU backup operation is referred to as multithreaded
because the utility processes multiple I/O operations at the same time. The
following table describes the default and optional methods of performing Oracle
RMU backup operations:

Type of Backup
Operation Description

Default Uses a single, multithreaded process that performs multiple I/O operations to
back up the database. This backup operation is the default for an Oracle Rdb
database and it is provided with the base Oracle Rdb software kit.

Parallel Uses multiple, multithreaded processes that work in parallel to back up
the database. Each process performs multiple parallel I/O operations
simultaneously to back up the database. Parallel backup is optional software
and is separately licensed.

Both methods of Oracle RMU backup operations can perform backup operations
for databases that are on line and openly accessible to users. During an
online backup operation, users can attach to the database and execute any
type of transaction that does not conflict with the read-only online backup
transactions.

Sections 7.2.1 and 7.2.2 describe the Oracle RMU backup operations in more
detail.

7–2 Backing Up Your Database

7.2.1 Oracle RMU Default Backup Operation
The Oracle RMU backup operation uses a single process to perform multiple
I/O operations; the process simultaneously performs read operations to the
database and write operations to one or more tape devices.

In a multithreaded backup operation, each storage area in a multifile database
is assigned its own thread. In addition, if you have more than one master tape
drive, the backup procedure assigns a backup thread to each drive.

Note

Multithreaded processing occurs only when you back up the database
to tape devices. The Oracle RMU backup operation is single threaded
if you back up to a disk device.

For example, Figure 7–2 shows a database that has four storage areas and two
master tape drives. The Oracle RMU backup operation assigns threads to each
of four storage areas and assigns backup threads to both tape drives.

Figure 7–2 Multithreaded Oracle RMU Backup (Single Process)

Disk 1

Disk 2

.rdb

.rda

.rda

.rda

.rda

Database Backup
(.rbf) File

NU−3577A−RA

(database root file)
(700 blocks)
(1000 blocks)

(400 blocks)
(100 blocks)

Drive 1

Drive 2

Buffer to

Buffer to

Drive 1

Drive 2

The Oracle RMU backup operation automatically balances the workload
and I/O activity across all the storage areas and backup devices. Notice the
following about the Oracle RMU backup operation in Figure 7–2:

1. When the backup operation starts, the Oracle Rdb database root (.rdb) file
is backed up first. The backup procedure always locates the database root
file in its entirety on the first tape written on Drive 1.

Backing Up Your Database 7–3

Note

If the database root file is too large to fit on the first backup device, an
error occurs. However, the error is unlikely to occur unless you write
the backup file to a tape that already contains files. (For example, if
you back up to a tape that has not been rewound (using the NoRewind
qualifier).)

2. After Oracle RMU backs up the database root file, it backs up all the
storage areas. Oracle RMU assigns storage areas to tape drives based on
the number of database pages in each storage area. The backup procedure
assigns the largest storage area to the first tape drive and the second
largest storage area to the second tape drive. Remaining storage areas are
assigned in an attempt to balance the number of blocks Oracle RMU writes
to each buffer.

Oracle RMU displays messages telling you which backup threads are
assigned to each drive and which storage area threads are assigned to each
backup thread. You can see an example of this output in Example 7–2.

3. The tape backup thread writes the buffer (filled by the storage area
threads) to tape. You use qualifiers on the RMU Backup command to
specify the number of buffers the backup thread controls and allocates
to the storage area threads. The number of buffers is equivalent to the
maximum number of active write operations to the backup device.

4. If you have more than one master tape drive, the backup procedure writes
to each tape drive independently.

7.2.2 Oracle RMU Parallel Backup Operation

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS systems, Oracle RMU can also perform a database backup using
multiple multithreaded processes working in parallel. This option, called a
parallel backup, uses the default Oracle RMU multithreaded backup process,
but it allows you to distribute the work among multiple processes to improve
load balancing and performance. (All Oracle RMU backup operations are
‘‘parallel’’ in the sense that the backup process is multithreaded. However,
with the default Oracle RMU backup operation, only one thread can run at a
time.)

Note

You must have Oracle SQL/Services installed to perform a parallel
backup operation. Refer to the Oracle SQL/Services Installation Guide

7–4 Backing Up Your Database

and the Oracle SQL/Services Release Notes for more information about
installing and using the Oracle SQL/Services.

Figure 7–3 shows how a parallel backup operation uses multiple,
multithreaded subprocesses called worker processes that back up assigned
storage areas using assigned tape drives. By breaking the work load across
multiple worker processes, you enhance the speed of the backup operation on
OpenVMS systems.

Backing Up Your Database 7–5

Figure 7–3 Multithreaded Oracle RMU Backup Using Multiple Parallel
Processes

.rda

.rda

.rda

Disk 1

Disk 2

Disk 3

Disk 4

Disk 5

.rdb

.rda

.rda

.rda

.rda

.rda

.rda

.rda

.rda

.rda

Database Backup
(.rbf) FileWorker Process

NU−3578A−RA

Worker Process

Worker Process

Drive 1

Drive 2

Drive 3

Drive 4

Drive 5

Drive 6

Drive 7

Buffer to

Buffer to

Buffer to

Buffer to

Buffer to

Buffer to

Buffer to

Drive 1

Drive 2

Drive 3

Drive 4

Drive 5

Drive 6

Drive 7

7–6 Backing Up Your Database

Each worker process can run on a different CPU on a symmetric
multiprocessing (SMP) machine or on a different node in a cluster to further
enhance the speed of the operation. The parallel backup operation is most
beneficial when you use three or more processors in an SMP machine.

The worker processes are coordinated by a master coordinator process.
The coordinator process serves as the backup operation execution manager.
You specify information about the coordinator process and how the backup
operation is split across worker processes in a plan file.

Section 7.5.6 and Section 7.10 describe parallel backup operations in more
detail. ♦

7.3 Invoking the RMU Backup Command
When you invoke the RMU Backup command, Oracle RMU reads an Oracle
Rdb database and writes the output to a single output file. On the RMU
Backup command line, you must specify the database root file (.rdb) that
you want to back up and where you want the backup operation to place the
resulting backup (.rbf) file. The following example shows the Backup command
syntax on a Digital UNIX system:

$ rmu -backup root-file .rdb backup-file .rbf

Note

Before you perform a backup operation in a clustered OpenVMS
system, you must:

• Define the logical names SQL_USERNAME and SQL_PASSWORD

• Provide proxy access (for the user that starts the backup operation)
between all nodes involved in the backup operation

By default, Oracle RMU backs up all database pages in all storage areas of
an Oracle Rdb database. Also, you can use qualifiers on the Backup command
line to customize the backup operation. For example, you might back up only
database pages in selected storage areas, or only the pages that have changed
since the time of the last complete backup operation.

Oracle Corporation recommends using the RMU Backup command to protect
both single-file and multifile databases. The Oracle RMU backup utility
performs better than other backup mechanisms because Oracle RMU is
designed specifically for use with Oracle Rdb databases.

Backing Up Your Database 7–7

Note

Do not use other backup utilities such as the OpenVMS Backup
(BACKUP) utility or the Digital UNIX tar function to back up and
restore Oracle Rdb databases. Relying on backup utilities other than
Oracle RMU can compromise the reliability and availability of the
database. See Section 7.4 for more information.

Although many discussions in this chapter include examples of how to use the
RMU Backup command, you should also refer to the Oracle RMU Reference
Manual for a complete description and examples.

7.3.1 What Does Oracle RMU Back Up?
The Oracle RMU backup operation provides a range of backup options that
allow you to back up the entire database, individual storage areas, or only the
database pages that have changed since the last full backup operation. There
are four basic types of Oracle RMU backup operations:

• Full and complete

• Full and by area

• Incremental and complete

• Incremental and by area

Table 7–1 describes these Oracle RMU backup operations and the Backup
command qualifiers you use to implement each type.

7–8 Backing Up Your Database

Table 7–1 Types of Oracle RMU Backup Operations

Storage Area Selection

Database Page
Selection

Complete
(All Storage Areas)

By-Area
(Selected Storage Areas)

Full
(All database
pages.)

Copies the database root (.rdb) file
and all the database pages in all the
storage areas in the database. This
is the default backup operation. You
must use this type of backup prior to
upgrading to a newer version of Oracle
Rdb.

Qualifiers: None required. This is the
default backup operation.

Copies the database root (.rdb) file and backs up only the
database pages in the storage areas that you specify on
the RMU Backup command line. All the storage areas
are backed up only if you specify them all (or perform a
full and complete backup operation).

Qualifiers: Specify the storage areas using one of the
following qualifiers:

• Include=[storage_area[,...]]

• Exclude=[storage_area[,...]]

Incremental
(Only pages
that have
changed since
the last full
and complete
backup.)

Copies the database root (.rdb) file
and all database pages that have been
updated since the latest full backup
operation. Free space on those pages,
and snapshot (.snp) file pages will not
be copied to the backup file.

Qualifiers: Use the following qualifier:

• Incremental (same as
Incremental=Complete)

Copies the database (.rdb) file and only the database
pages for the specified storage areas that have changed
since the latest full backup operation.

Qualifiers: Specify the storage areas using one
of the following qualifiers on the RMU Backup
Incremental=By_Area command:

• Include=[storage_area[,...]]

• Exclude =[storage_area[,...]]

For most databases, you might want to consider some combination of full and
complete backup, and incremental backups. For example, you might want to
perform a weekly full and complete backup, and nightly incremental backups.

Section 7.5 provides guidelines to help you determine a backup strategy.

7.3.2 Writing the Backup Output File
All Oracle RMU backup operations produce a single database backup file. The
default file extension is .rbf, but you can specify another file extension on the
RMU Backup command line.

The following sections provide information about writing the backup file to
tape or disk devices, and the contents and size of the resulting backup file.

Backing Up Your Database 7–9

7.3.2.1 Writing Output to Multiple Tapes
The backup operation creates one file on multiple volumes that follow the ANSI
tape standards. An ANSI labeled tape is a sequential file. If all the data does
not fit on one tape volume, an End-Of-Volume record is written at the end of
the tape and the data continues on the next volume.

When reading the tape, the End-Of-Volume record is a signal that the file is
continued on another volume. The end of the file record is written on the last
volume after all data has been written on the last volume. Data from different
files cannot be intermixed. All bytes for one file must appear on the tape
followed by all bytes for a second file and so on. Oracle RMU does not support
starting one file followed by the start of another file on the same tape.

Note

When Oracle RMU creates a multiple-volume backup file, you can
append data only to the end of the last volume. You cannot append
data to the end of the first or any intermediate volumes.

When multiple tape volumes are available for the backup operation, Oracle
RMU does not write the tape volumes sequentially. Instead, Oracle RMU
writes to the multiple volumes at the same time to gain better performance.
When the backup operation is complete, it has created a multi-volume set
that appears to have been created by writing sequentially to a tape. When
a tape is full, but not all data is written, the backup operation writes out an
End-Of-Volume label to that tape, regardless of how much tape is left on that
volume. Furthermore, additional data cannot follow an End-Of-Volume record
on a tape.

If your goal is to:

• Pack as much data onto the tapes, back up each database to only one of
the two drives. Of course, you can perform two backup operations to two
different tape drives at the same time.

• If your goal is to back up the database as quickly as possible, then you may
have unused tape on all but the last volume of your backup.

7–10 Backing Up Your Database

7.3.2.2 Output to Tape or Disk
Although Oracle RMU can back up the database file to either disk or tape
media, Oracle Corporation recommends storing your database backup file
directly onto one or more tapes because:

• Tapes allow you to decrease the time it takes to perform a backup operation
because you can write to several tapes in parallel. You can write to only
a single disk device at a time. The time it takes to perform a backup
operation to a single disk is about the same as it is to a single tape.

• Tapes are expandable to an infinite length. If you need more space, you
simply mount another tape volume. However, when backing up to disk,
the size of your backup file is limited to the size of the disk. Disks are
finite-sized containers. (You can increase the size of disks somewhat by
using RAID (redundant arrays of inexpensive disks) striped disks or bound
volumes (for OpenVMS).)

• Tapes are easier to store, thus tapes make a better archival medium.

• Disks are at risk to damage from hardware failures, such as a head crash.

Note

Parallel backup operations require that you back up to tape devices.

If the database is very small, you might choose to write the backup file to a
single disk file. The following table provides recommendations for tape and
disk backup operations.

If You Write
the Backup
File to . . . Then . . .

Disk Store the file on a disk other than the one on which your database resides. You do
not want to risk losing both your database and your backup files if you lose a disk.

See Section 7.12 for more information about backing up to a disk device.

Tape Create and store the database backup file directly onto one or more tape devices,
or you can create and store it on a disk device and later back up the file to tape
using the OpenVMS Backup utility or the Digital UNIX tar function.

See Section 7.13 for more information about backing up to tape devices.

Backing Up Your Database 7–11

7.3.2.3 Contents and Size
Although backup files incur some overhead to support the backup format, they
are typically smaller than the actual database.

Note

Do not use the size of the backup file as an indication of the size of the
database files. Use the RMU Analyze command to determine the actual
data content. See the Oracle RMU Reference Manual for information.

The backup file is smaller than the actual database (for most backup
operations), because available space in the database root file and empty
database pages in storage area files are not written to the backup file. They
can be reconstructed with a restore operation.

Although the Oracle RMU backup operation does not write backup files in
compressed format, you can enable hardware data compression when you
use tape drives as your backup output device. (Refer to your operating
system documentation for information about enabling data compression.)
Data compression provides the best backup performance to tape. You cannot
enable data compression when backing up your database to disk devices.

Table 7–2 summarizes which files, storage areas, and pages are backed up for
each type of Oracle RMU backup operation. The database root file is backed up
in every type of backup operation, including a by-area backup operation.

Table 7–2 Files, Areas, and Pages That Oracle RMU Backs Up

Files, Areas, and Pages That Are Backed Up

Type of
Backup

.rdb
Files .rda Files Empty Pages

SPAM
Pages

.snp
Files

Full and
complete

Yes All database pages in all storage
areas in a database

Yes (Compressed) No No

Full and
by-area

Yes 1 1 1 1

Incremental
and complete

Yes Only database pages in storage areas
that have changed since the last full
backup

Yes (if the page became
empty since the last
backup operation)

No No

1All the database pages in storage areas you specify with the Include or Exclude qualifier

(continued on next page)

7–12 Backing Up Your Database

Table 7–2 (Cont.) Files, Areas, and Pages That Oracle RMU Backs Up

Files, Areas, and Pages That Are Backed Up

Type of
Backup

.rdb
Files .rda Files Empty Pages

SPAM
Pages

.snp
Files

Incremental
and by-area

Yes 2 2 2 2

2Only database pages in storages areas that have changed since the last full backup or you specify with the Include or
Exclude qualifier

7.3.2.4 Protection
You can use the Protection qualifier on the RMU Backup command to change
the default file protection for the backup file. If you do not specify the
Protection qualifier, it defaults as follows:

• On OpenVMS systems, the default protection is:

S:RWED,O:RE,G,W for disks

S:RW,O:W:RW,G:RW,W:R for tapes

Tapes do not allow delete or execute acess, and SYSTEM always receives
read and write access.

• On Digital UNIX systems, the default protection for tapes is -rw-r-----

See the Oracle RMU Reference Manual for more information.

7.4 Why Not Use Other Backup Utilities?
Oracle Corporation recommends that you use only the Oracle RMU utility to
back up Oracle Rdb databases. Do not use other backup utilities such as the
OpenVMS Backup (BACKUP) utility or the Digital UNIX tar function to back
up and restore Oracle Rdb databases, especially multifile databases.

The information in Table 7–3 describes how the Oracle RMU utility automates
backup tasks that you would have to perform manually with operating system
backup utilities.

Backing Up Your Database 7–13

Table 7–3 Comparison of Oracle RMU Backup and Operating System Backup Utilities

Category Oracle RMU Backup Operating System Backup

Concurrency Controls (allows or prevents) database access
from users during the backup operation.

Locks one file at a time, possibly either causing
other users to fail or producing a corrupt backup
copy, because a transaction is recorded for one area
but not for another area.

Efficiency Allows you to back up only the files needed
to re-create the database. For example, you
might exclude free spaces on used pages,
snapshot records, or database structures that
can be reproduced with an Oracle RMU restore
operation.

Requires that you back up all files associated with
the database.

Flexibility Allows you to restore (using the RMU Restore
command) the database to different locations,
and change database characteristics during
a restore operation. Also, the RMU Restore
command allows you to restore only the pages
that are corrupt, while the rest of the database is
in use.

Is unable to relocate files or change database
characteristics. This is because the operating
system backup utilities do not contain internal
pointers to the various files.

Incremental
backup

Provides an incremental backup of database
pages that have changed since the last full
backup.

Provides incremental backup at the file level only.

Integrity Automatically:

• Updates the database root file with the
correct location and version number of all
the files associated with the database.

• Recovers all the necessary recovery-unit
journal files before starting the backup
operation.

• Works in conjunction with after-image
journaling.

Requires that you manually:

• Back up the database root file; operating
system backup utiltiies do not automatically
update the database root file.

• Check for (and recover) any outstanding
recovery-unit journals before starting the
backup operation.

• Keep track of the locations for the after-image
journal (.aij), database root (.rdb), storage area
(.rda), and snapshot (.snp) files.1

Online
/Offline

Backs up databases while they are on line and
accessible by users and applications.

Requires that all database activity be stopped
during the backup operation.2

1When you perform an Oracle RMU restore operation, you must know the disk device and directory of each file
specification. If these files were created with concealed logical names, then you also must know these logical names.
If you have a multifile database, this can become very complicated. One missing file following an OpenVMS restore
operation will cause the database to be corrupt.
2For cluster environments, make sure there are no users on the database on any node in the cluster environment during
the backup operation. Also, the database must be closed if global buffers are enabled.

(continued on next page)

7–14 Backing Up Your Database

Table 7–3 (Cont.) Comparison of Oracle RMU Backup and Operating System Backup Utilities

Category Oracle RMU Backup Operating System Backup

Processing Reads simultaneously from all disk drives used
for the database to avoid an I/O bottleneck
on one disk drive. Writes simultaneously to
multiple tape drives to keep the tapes running at
‘‘streamlining’’ speed.

Reads from one disk drive. Writes to one tape drive
at a time.

Speed Is designed specifically for backing up Oracle Rdb
databases, and is optimized for database backup
operations. Oracle RMU is significantly faster
than operating system backup utilities.

The OpenVMS Backup utility processes approxi-
mately 0.5 gigabytes per hour.

The Digital UNIX tar function statistics are not
available.

Support Is the only supported backup utility for Oracle
Rdb databases.

Is not supported for Oracle Rdb databases.

In addition, if you use OpenVMS or Digital UNIX backup utilities, the
Oracle Rdb database must not require recovery when the backup operation is
completed. If it requires recovery, then the restored database is corrupt until
you restore recovery-unit journal (.ruj) files. Therefore, you must locate all
database recovery-unit journal files and back them up, too, as part of your
backup operation because these backup utilities do not restore an unrecovered
database.

Note

Oracle Corporation also recommends against using OpenVMS
shadowed disks or Digital UNIX mirrored (LSM) disks as an
alternative strategy to Oracle RMU database backup. These products
are intended for data availability, not data integrity. Using shadowed
or mirrored volumes to back up an Oracle Rdb database is prone to
errors and can result in extended periods of database inaccessibility.

7.5 Database Backup Strategies
Your backup strategy should find the proper balance between these objectives:

• Minimize the operational overhead of the backup operations

• Maximize database security and integrity

To help you achieve this balance, you should take into account the
requirements of your applications and users, the importance and volatility of
the data, and the resources you can devote to performing the backup operation.

Backing Up Your Database 7–15

Also, keep in mind the amount of file management and manual intervention
required with each type of backup operation. For example, there is relatively
little manual intervention required for a full and complete backup operation
compared with a by-area backup operation. Although you gain backup
flexibility, a by-area backup operation requires that you have a sound backup
file-management strategy that is coordinated with your after-image journaling
procedures.

The sections referenced in the following table provide discussions to help you
weigh the specific requirements of your database against the capabilities of the
different types of Oracle RMU backup operations.

Section Reference

Determining how frequently you need to back up your database Section 7.5.1

Requirements for using full and complete backup operations Section 7.5.2

Choosing between a full versus an incremental backup operation Section 7.5.3

Choosing by-area backup operations Section 7.5.4

Performing backup operations to online versus offline databases Section 7.5.5

Using parallel backup operations Section 7.5.6

7.5.1 Determining How Frequently You Need to Back Up Your Database
The type and frequency of your backup operations depend on the size of
your database, the frequency of its update activity, and your strategy for
restoring a database in the event of a failure. Table 7–4 describes some of
these considerations.

Table 7–4 Determining the Frequency of Database Backups

If Your Database . . . Then . . .

Is small Perform full and complete backup operations only, because
they take little time or disk space.

Is large Perform a full and complete backup operation once a week and
incremental backup operations every working day.

Is updated infrequently Perform backup operations infrequently or perform frequent
incremental backup operations.

Is updated daily Back up the database daily.

(continued on next page)

7–16 Backing Up Your Database

Table 7–4 (Cont.) Determining the Frequency of Database Backups

If Your Database . . . Then . . .

Contains read-only or write-once
storage areas

See Section 7.9 to further modify your backup strategy to
match your particular application.

7.5.2 Requirements for Using a Full and Complete Backup Operation
A full and complete database backup operation is the default Oracle RMU
backup operation. This option copies the database root file and all storage
areas in the database. You must perform a full and complete backup operation
under the following circumstances:

• Before you perform an incremental backup operation for that database.

Your first backup operation must be a full backup to create an initial
database backup file. Similarly, you must restore your database from a full
backup file before you can restore the latest incremental backup file for
that database since the last full backup operation was made.

• After you make changes in the physical or logical design.

If you were to perform an incremental backup operation under these
circumstances, it could result in the inability to recover the database
properly.

• Prior to installing (upgrading to) a newer version of Oracle Rdb on your
system.

Note

You cannot apply a by-area backup operation, an incremental backup
operation, or a set of after-image journals across an Oracle Rdb version
upgrade. Therefore, you must always perform a full and complete
backup operation prior to installing and upgrading the version of your
Oracle Rdb software.

• After using the RMU Convert command to convert an Oracle Rdb database.

• Before and after you use the RMU Repair command.

• After using an RMU Alter command that changes the contents or file
names in a database (for example, after the Commit, Deposit, Deposit Root,
or Move commands).

Section 7.7 describes how to perform a full and complete backup operation.

Backing Up Your Database 7–17

7.5.3 Guidelines for Choosing a Full Versus an Incremental Backup
Operation

Use the guidelines in Table 7–5 to determine whether to perform a full or
incremental database backup:

Table 7–5 Determining When to Use a Full or an Incremental Backup
Operation

Perform . . . If . . .

A full backup
operation

10 percent of the database pages have changed since the last full backup
was performed.

Over time, you can readjust this backup strategy to include more
incremental backups according to your particular database usage. For
example, you might modify your strategy based on the following metrics:

Track the elapsed time required to do an incremental backup each day.
Because an incremental backup requires more calculations than does a
full backup, it can actually take longer to complete.

If the time required to do an incremental backup is close to the time
required to do a full backup, you should perform a full backup instead.

A full backup
operation

Any of the following conditions exists:

After you finish loading data in a new database

After a large percentage of the data has changed due to some special
processing

Before and after changing the structure of your database (with the
SQL ALTER DATABASE statement)

Before upgrading versions of Oracle Rdb

After correcting any sort of database corruption

After using the RMU Convert command to perform a database
conversion

A full backup
operation

The most important consideration is to minimize recovery time.

In some cases, a large incremental database restoration might take longer
to complete than a full backup restoration. Be sure to measure the time
required to restore the largest incremental backup in your strategy.

More incremental
backup operations

The most important consideration is to minimize the impact on users and
applications during backup operations.

Verify that your backup strategy is adequate by practicing a complete Oracle
RMU restore operation including after-image journal recovery. This will help

7–18 Backing Up Your Database

you determine if the time required to restore the database is acceptable in your
business environment.

For more information, see:

• Section 7.7 for information about starting a full backup operation

• Section 7.8 for information about starting an incremental backup operation

7.5.4 Guidelines for Choosing a By-Area Backup Operation
When you implement a physical database design that uses updatable
(read/write and write-once) and read-only storage areas, you may want to
implement a more flexible by-area backup strategy that backs up only selected
storage areas.

7.5.4.1 Strategies
You can save considerable time and resources by modifying your backup
strategy to perform full/by-area and incremental/by-area backup operations.
This is especially true for large to very large databases and for databases that
are mostly read-only or that use WORM media almost exclusively.

One of the best policies to observe when devising your backup strategy is to
plan carefully for database recovery. Because the backup file may be a partial
by-area backup operation, you must ensure that you can restore and recover
all storage areas of a database. A well-planned by-area backup strategy:

• Does not omit any storage areas

• Takes into account the activity within all tables for each storage area

• Ensures the database can be completely restored

• Recovers the database up to the most recently completed transaction

A by-area backup operation allows you to choose which storage areas
(read/write, read-only, and write-once) are backed up when you enter the
RMU Backup command.

Backing Up Your Database 7–19

Table 7–6 Strategies for Backup File Management

Storage
Areas Strategy

Read-Only
and Write-
Once

For read-only and write-once storage areas, consider the following backup strategy:

• Perform a full and complete backup operation on the database on a regular basis so that you have
one backup file that contains the entire database.

An exception to this recommendation is when a database contains hundreds of write-once, read-
many (WORM) disk media and only a few WORM drives. In this case, it is impractical to perform
a full and complete backup operation on the database.

• Back up selected collections of storage areas.

A collection consists of areas associated by data interrelations, or by physical data placement
(for example, data residing on the same disk, I/O controller, striped disks, and so forth.) How
frequently you back up these collections depends on how frequently the collection is updated and
how much time is allowable for restoration and recovery of data in the collection.

For example, suppose you have five areas on one I/O controller. If the I/O controller goes bad,
you need to restore five areas. It is faster, easier, and more cost-effective to do this as one backup
operation rather than restoring five areas from multiple tapes or performing five separate restore
operations from five backup operations. Also, keeping related data (data that is updated as a unit)
together makes sense if you ever need to reconstruct an historical state from backup files.

• Back up write-once and read-only storage areas with a frequency that depends on the limits of
restore and recovery time if the entire database or write-once or read-only areas are lost.

(continued on next page)

7–20 Backing Up Your Database

Table 7–6 (Cont.) Strategies for Backup File Management

Storage
Areas Strategy

Read-Only Once you set the storage areas to read-only and back them up, you no longer need to include them
as part of your regular backup strategy. You need to back up only the updatable storage areas on a
regular basis. Use the Include or Exclude qualifier to explicitly select read-only storage areas.

Using this strategy, you might be able to back up fewer storage areas and possibly realize some time
and resource savings in the backup operation. The savings are dependent on the size of the read-only
storage areas. For example:

If . . . Then . . .

Your database application has read-only access
exclusively or contains many large read-only
storage areas

The savings can be considerable.

Your database application has a few small read-
only storage areas, or none at all

The savings may be minimal.

For best results, you must:

• Enable after-image journaling to keep track of all committed transactions between backup
operations

• Retain after-image journals for a sufficiently long period so you can recover the storage areas with
the lowest frequency of backup

You must recover read-only storage areas from after-image journals because read-only access can be
changed at any time. So, you must use the journals to determine if the access was changed since the
last backup operation. If some area is backed up only once a month, then you must keep journals for
at least 1 month. Keep journals for 2 to 3 months for the best failure protection.

(continued on next page)

Backing Up Your Database 7–21

Table 7–6 (Cont.) Strategies for Backup File Management

Storage
Areas Strategy

Read/Write If you know that one or more read/write storage areas remain unchanged for extended periods of
time and you do not want to make these storage areas read-only, you can implement the following
alternative backup strategy:

Step Task

! Enable after-image journaling to keep track of all committed transactions that occur between
backup operations.

" Monitor table or storage area update activity.

Modify your backup schedule by selectively excluding any unchanged storage areas from the
regular weekly or daily backup operation. (See Section 7.5.4.2 for selecting storage areas.)

$ Retain after-image journals for a sufficiently long period of time so that you can recover the
storage area with the lowest frequency of backup.

If you implement this backup strategy, plan carefully so that all read/write storage areas containing
new or updated table rows are backed up regularly.

7.5.4.2 Command Qualifiers
You select storage areas using the Include, Exclude, Read_Only, and Worm
qualifiers with the RMU Backup command. A by-area backup operation may
be either full or incremental.

See Section 7.9 for more information about starting a by-area backup operation.

7.5.5 Guidelines for Performing Online Versus Offline Backup Operations
Oracle RMU can make a complete and consistent backup copy of your database
either while the database is on line while users have access to the (open)
database, or off line while access to the database is denied (closed) to users.

Table 7–7 compares the advantages of using online versus offline backup
operations.

7–22 Backing Up Your Database

Table 7–7 Comparison of Online and Offline Backup

Perform Offline Database Backup When . . . Perform Online Database Backup When . . .

There are periods in the day or night when there
is no demand for database access and operators
are available to mount the backup media.1

Applications or users must have uninter-
rupted access to the database, 24 hours a
day.

You do not want to add the CPU and I/O demands
of backup to the existing database work load at
any time during regular processing periods.

Your system has sufficient capacity to add the
backup work load to the existing user work
load during your processing cycle.

The update activity on your database is heavy
and you are unwilling to tolerate the snapshot
file growth that results from online backup
operations.

You have sufficient disk space available for
the snapshot file growth that occurs during
the long backup read-only transaction.

You make extensive use of Batch Update or
Exclusive transactions.

You must disable snapshot files. You can enable snapshot files.

1If you start an offline backup operation while users are attached to the database, the backup
operation fails (see Example 7–10).

If you choose to perform a backup while the database is off line, you must
restrict access to the database using the RMU Close command before you begin
the backup operation. After the backup operation has completed, open the
database manually or automatically when you finish the backup operation.
(Chapter 4 describes using the RMU Open and Close commands.)

See Section 7.11 for information about performing an online backup operation.

7.5.6 Guidelines for Choosing Parallel Backup Operations

OpenVMS
VAX

OpenVMS
Alpha

Parallel backup refers to multiple processes cooperating to create one backup
file. The processes run in parallel to reduce the time required to back up
a database. The master process, called a coordinator process, controls
worker processes that perform the backup operation. The worker processes
concurrently perform backup operations using the same algorithm used for the
default (non-parallel) Oracle RMU multithreaded backup. On cluster systems,
the worker processes can run on different nodes in the cluster.

In most cases, the default (non-parallel) Oracle RMU backup operation is
capable of sufficiently high performance to satisfy most database backup
requirements. The default Oracle RMU backup operation can drive all I/O
paths to capacity up to the limit of the CPU.

Backing Up Your Database 7–23

However, if your backup performance is not satisfactory, the first step is to
check your CPU utilization as described in the following table:

If . . . Then . . .

There is less than 90%
CPU utilization during
the backup operation

There is a bottleneck in the I/O subsystem, or you do not have enough
tapes running at once, or storage areas are not spread over enough
disks. Check individual and aggregate bandwidth capacities for all
buses, adaptors, controllers, and devices that are used during the
backup operation. Use the OpenVMS Monitor utility (MONITOR
/SYSTEM) or the Digital UNIX vmstat command to show CPU
utilization. Verify that the bandwidth capacities are sufficient to
support the expected backup performance.

The problem is not due
to the I/O subsystem
and the CPU utilization
is high

It is likely that the demands of the backup operation exceed the
capacity of a single CPU. Although powerful, the default (non-parallel)
Oracle RMU backup operation executes as a single process and can
exceed the capabilities of a single CPU. Use the Oracle RMU parallel
backup operation to overcome this performance barrier.

The parallel backup operation can be useful in the following situations:

When . . . Then . . .

You back up the database to
multiple tape drives and the
tape drives cannot run at full
speed because there is not
enough CPU power

You can use parallel backup to distribute the work across multiple
CPUs. For example, if you have multiple CPUs (either because
you are using an SMP machine or you are running in a cluster
environment) and there is unused time on other CPUs.

You need to perform backup
operations as quickly as
possible

You can add more tape drives and CPUs to do the work in parallel
processes.

Your system configuration
includes multiple CPUs

Parallel backup allows performance to scale across CPUs in an
SMP system and across nodes in a cluster.

Because each worker process is a powerful multithreaded backup
thread, there is no need to configure more than one worker
process per available CPU. By configuring fewer worker processes
than CPUs, you can ensure that CPU capacity remains for other
work besides the backup operation.

You want to partition work
among specific worker
processes

Parallel backup enables you to assign the processes to nodes that
can most swiftly accomplish the work.

7–24 Backing Up Your Database

When . . . Then . . .

You have multiple nodes in
a cluster and you have tape
drives that are local to the
nodes

You can use parallel backup to assign worker processes so that
they write to local devices. (For example, if tape drives are
connected locally to each node in a cluster.) This backup strategy
performs better than a configuration in which worker processes
write to devices that are served remotely. The backup operation
can write to local tapes faster than served tapes, so it is faster to
assign each worker process to the same node as the tape drive to
which the worker process writes.

You want to monitor the
performance of your backup
operation on a Windows
system, you can run with
only one parallel process

If you specify only one worker process on the RMU Backup
command, Oracle RMU performs a default (non-parallel) backup
operation. In this case, the backup operation still invokes a
coordinator and a worker process. By specifying a non-parallel
backup operation in this way, you can monitor the progress of
your non-parallel backup operation on your Windows system
using the Parallel Backup Monitor Windows interface.

The parallel backup process requires that you create a plan file that directs the
work of the backup processes.

See Section 7.10 for more information about creating a plan file and starting a
parallel backup operation. ♦

7.6 Implementing a Reliable Database Backup Procedure
This section provides general recommendations for achieving database integrity
and includes a sample procedure for creating and maintaining regular database
backup operations.

In addition, Section 7.6.3 describes how to calculate minimum working set
requirements, and Section 7.6.4 explains how to use the Checksum_Verification
qualifier to verify each database page before it is backed up.

7.6.1 Recommendations
Using the guidelines in Table 7–8, you should be able to develop an overall
strategy to help you recover from the failure of any single component of the
database.

Backing Up Your Database 7–25

Table 7–8 Recommendations for Safeguarding Database Integrity

Prior to Backup During Backup After Backup

Consider:

• Spreading the database files
over many disk drives.

• Using after-image
journaling to retain
completed transactions.

• Making sure the after-
image journal file is on a
separate disk from the rest
of the database.

• Implementing RAID
(redundant arrays of
inexpensive disks)
technology (such as disk
mirroring or shadowing) to
prevent a disk device failure
from interrupting system
and application operations.

Routinely:

• Verify that the database is internally consistent
and can be restored if necessary.

• Back up the after-image journal before you back
up the database.

• Back up the database at regular intervals.

• Schedule backup operations during periods with
the lowest database activity.

• Maintain a log of backup activities. This log
should contain elapsed times for each backup
activity.

• Use backup journal files to record details of your
backup operations.

• Check the backup file and media using the RMU
Backup and RMU Dump commands.

• If possible, separate OpenVMS and Digital UNIX
backup operations from Oracle RMU backup
operations to avoid contention for disk and tape
drives, and to avoid mixing up or mislabeling
tape volumes.

• Do not use the OpenVMS Backup utility or the
Digital UNIX tar function to back up your
Oracle Rdb database.

Periodically:

• Restore and recover
the database to a
new set of disks and
verify the database
copy.

• Store some backup
volumes to a
location separate
from where you
store the database
root file.

• Test your backup
strategy by
simulating a failure.

7.6.2 Sample Backup Procedure
Table 7–9 takes you step-by-step through a sample backup procedure. The
sample demonstrates a procedure that is useful for a database that does not
contain read-only or write-once storage areas. (See Section 7.9 for information
about working with databases that contain read-only or write-once storage
areas.)

Assume the following for the sample procedure described in Table 7–9:

• The backup operation is performed on a large database that is updated
daily.

• You use the RMU Backup command to perform a full and complete
database backup operation each Friday.

7–26 Backing Up Your Database

You might also consider using a verify operation with the full backup
operation. Whether you perform a verify operation depends on the size of
the database, the time available to verify the database, and your system
configuration and resources. For larger databases, the verify operation
is not practical. In some cases, the verify operation can take longer to
perform than the backup operation itself.

• You use the RMU Backup Incremental command to perform incremental
database backup operations on the other working days, Monday through
Thursday.

• If anything happens to your database, you can restore a full or an
incremental database backup file from tape. Use the RMU Restore,
and the RMU Restore Incremental commands to restore your database
to the condition it was in at the time of the most recent database backup
operation.

Table 7–9 Sample Full and Complete, and Incremental Backup Procedures

Step Action

! Backup after-image journals.

Refer to Chapter 9 for more information.

" Start a full backup operation.

The following examples demonstrate the commands for OpenVMS and Digital UNIX:

$ RMU/BACKUP DB_DISK:[MFPERS]MF_PERSONNEL DBS_BACKUPS:PERS_FULL.RBF

$ rmu -backup /usr/db_disk/database/mf_personnel.rdb /usr/pers_full.rbf -log

Verify the contents of a backup file after a backup operation.

Optionally, you can check the readability of the backup (.rbf) file by using the RMU Dump command with the
Backup_File qualifier. This step is recommended if you experience problems with hardware or media during
the backup operation and want to check the internal structure of the backup file for readability. If you do not
specify the Options qualifier, Oracle RMU returns the operating system prompt, indicating that the backup file
(.rbf) file is fine; otherwise, Oracle RMU displays an error message.

The following examples demonstrate the commands for OpenVMS and Digital UNIX:

$ RMU/DUMP/BACKUP_FILE DBS_BACKUPS:[MFPERS]PERS_FULL.RBF

$ rmu -dump -backup_file /usr/pers_full.rbf

(continued on next page)

Backing Up Your Database 7–27

Table 7–9 (Cont.) Sample Full and Complete, and Incremental Backup Procedures

Step Action

$ Verify a database prior to an incremental backup operation.

Each regular weekday night (Monday through Thursday), you might want to perform an incremental database
verify operation (to ensure that the database is not corrupt) prior to performing an incremental backup
operation.

The following examples demonstrate the commands for OpenVMS and Digital UNIX:

$ RMU/VERIFY/INCREMENTAL DB_DISK:[MFPERS]MF_PERSONNEL

$ rmu -verify -incremental /usr/db_disk/database/mf_personnel.rdb

% Start an incremental backup operation if the incremental verify operation is successful (no error messages are
displayed that indicate that verification has failed).

The following examples demonstrate the commands for OpenVMS and Digital UNIX:

$ RMU/BACKUP/INCREMENTAL DB_DISK:[MFPERS]MF_PERSONNEL DBS_BACKUPS:[MFPERS]PERS_INCR.RBF

$ rmu -backup -incremental /usr/db_disk/database/mf_personnel.rdb /usr/pers_incr.rbf

& On OpenVMS systems, limit the number of incremental backup file versions on your system by:

• Setting purge limits for incremental backup files. For example:

$ SET FILE/VERSION_LIMIT=2 DBS_BACKUPS:[MFPERS]PERS_INCR.RBF

You can purge your incremental backup file after each incremental backup operation or use the DCL SET
FILE command, as shown, to automatically maintain a specific number of versions of your incremental
backup file. Keep the latest two versions of the backup file in case one is damaged.

• Using different file names (for example, use PERS_INCR_MONDAY.RBF on Monday).

' Verify the contents of an incremental backup file.

Verifying the backup file is not a requirement; it is necessary only if you experience problems during the backup
operation.

The following examples demonstrate the commands for OpenVMS and Digital UNIX:

$ RMU/DUMP/BACKUP_FILE DBS_BACKUPS:[MFPERS]MF_PERSONNEL PERS_INCR.RBF

$ rmu -dump -backup_file /usr/db_disk/database/mf_personnel.rdb /usr/pers_incr.rbf

If the operating system prompt displays and there are no error messages, the internal structure of the
incremental backup file is intact.

OpenVMS
VAX

OpenVMS
Alpha

See Section 7.13 for information about allocating and mounting tape drives on
OpenVMS systems during the backup procedure. ♦

7–28 Backing Up Your Database

7.6.3 Computing Working Set Requirements for OpenVMS

OpenVMS
VAX

OpenVMS
Alpha

You can optimize database backup performance on OpenVMS systems by
determining the minimum working set requirements and setting the OpenVMS
process quotas accordingly.

How to Calculate the Minimum Working Set
Table 7–10 describes how to determine working set sizes and includes examples
of calculations that are based on qualifier values from the following RMU
Backup command:

$ RMU/BACKUP/LOG/REWIND/NOCRC/ACTIVE_IO=5/BLOCK_SIZE=65024 -
_$ /PAGE_BUFFERS=2/JOURNAL=MONDAY.JNL/LABEL=(TAPE01) -
_$ MF_PERSONNEL.RDB T1:MONDAY_MF_PERS.RBF/MASTER

The following list uses the values of the Page_Buffers, Active_IO, and Block_
Size qualifiers to demonstrate the working set calculations for a database with
50 storage areas:

1. Calculate minimum working set requirements using the equations shown
in Table 7–10 (note that the units are in 512-byte pagelets):

Table 7–10 Calculating Working Set Size

Step Calculate: Example:

! Start with the value 1,000. 1000

" Multiply the number of storage areas being backed up * 164 (blocks).
(For a by-area backup operation, this is less than the total number of
storage areas in the database.)

50 * 164 = 8200

If Page_Buffers1 is equal to 3, 4, or 5, multiply the number of storage
areas being backed up * (Page_Buffers - 2) * 64 (blocks).

(Because Page_Buffers=2 in the
example, you can skip this step.)

$ Multiply the number of master tape drives * Active_IO * (Block_Size
/512).2, 3

1 * 5 * (65024 / 512) = 635

% Add all the values in the ‘‘Example:’’ column to compute the appropriate
working set value for the sample backup procedure.

1000 + 8200 + 635 = 9835

& On OpenVMS Alpha systems, round the working set size up to the nearest
multiple of 16 (there are 16 blocks in an 8K OpenVMS Alpha page).

(Round 9835 to the nearest
multiple of 16) = 9840

1The Page_Buffers qualifier specifies the number of disk buffers (from 2 to 5) assigned to each storage area.
2Active_IO specifies the maximum number (from 1 to 5) of simultaneous write operations to a backup device.
3Block_Size specifies the maximum record size (usually 32K or 64K) for the backup file.

2. Use the working set size calculated in Table 7–10 and the equations shown
in Table 7–11 to calculate the OpenVMS process quota values for the
account where you enter the RMU Backup command:

Backing Up Your Database 7–29

Table 7–11 Recommended OpenVMS Process Quotas

OpenVMS Process
Quota Calculate: Example:

WSDEF Working set size 98401

WSQUOTA Working set size + 2048 11,888

WSEXTENT Working set size + 4096 13,936

1Calculated in Table 7–10

Using these recommended settings ensures adequate memory for the
backup process and minimizes paging.

3. Use the OpenVMS Authorize (AUTHORIZE) utility to display the current
quota values for the account you use for backup operations. Change the
values, if necessary.

4. Log out of the account and then log in again so that the process quotas can
take effect.

Note

Parallel backup operations might require larger working set quotas
than non-parallel backup operations. For example, a worker process
in a parallel backup operation might require a larger working set than
a non-parallel backup operation that backs up the same number of
storage areas. The calculations described here provide a good starting
point for estimating the working set requirements of [RMU$SRV70]
(the account under which a worker process runs during a parallel
backup operation). If you observe excessive page faulting, you can
increase the quotas.

Refer to the Oracle RMU Reference Manual for additional information about
the Page_Buffers, Active_IO, and Block_Size qualifiers. ♦

7.6.4 Checking the Database Page Checksum During a Backup to Disk
The RMU Backup command provides checksum verification to authenticate
each database page before it is backed up. Using the Checksum_Verification
qualifier permits Oracle RMU to detect read failures and correct them,
resulting in:

• A comprehensive error detection capability during the read operation of the
backup procedure

7–30 Backing Up Your Database

• Added reliability when you are experiencing disk hardware problems

Note

The Checksum_Verification qualifier verifies database pages only if
you enabled checksum calculations with any of the following SQL
statements:

• ALTER DATABASE CHECKSUM CALCULATION IS ENABLED

• CREATE DATABASE CHECKSUM CALCULATION IS ENABLED

• CREATE STORAGE AREA CHECKSUM CALCULATION IS
ENABLED

Although checksum verification uses significant CPU resources, it can provide
an extra measure of confidence in the quality of data that you back up. Use
the guidelines in the following table to determine when to enable and disable
the checksum capability:

Qualifier Description

Nochecksum_Verification Use for offline backup operations. This is the default setting.

For offline operations, the additional CPU cost of using the Checksum
Verification qualifier might not be justified unless you are experiencing
disk, controller, or port hardware problems.

Checksum_Verification Use for all online operations that include database backup operations,
moving an area, or copying a database.

Such operations, when performed on line, may read a partial database
write operation. This is particularly true with shadow sets and striped
disks. These technologies distribute data over several disk drives, and
use of the Checksum_Verification qualifier permits Oracle RMU to
detect the possibility that the data it is reading from these disks has
only been partially updated.

Example Checksum Operations
When Oracle Rdb detects a disk read error or a bad page checksum, it marks
the database page as corrupt. If one or more pages in a storage area have
been marked as corrupt and the entries are made in the corrupt page table to
denote these corrupt pages, Oracle RMU returns the error message shown in
Example 7–1.

Backing Up Your Database 7–31

Example 7–1 Using Checksum to Verify Database Pages During a Backup
Operation

$ RMU/BACKUP /CHECKSUM_VERIFICATION DB_DISK:[MFPERS]MF_PERSONNEL -
_$ DBS_BACKUPS:PERS_FULL.RBF
%RMU-E-CORPAGPRES, Corrupt or inconsistent pages in area JOBS.RDA;1
%RMU-F-FATALERR, fatal error on BACKUP

In Example 7–1, Oracle RMU cannot back up the JOBS area until the
corruption is removed. In this case, the Checksum_Verification qualifier
prevents you from backing up corrupt data or from having the backup
operation fail later because of the corruption.

Chapter 8 describes how you can correct page corruptions using the RMU
Restore and RMU Recover commands.

7.7 Performing Full and Complete Database Backup Operations
A full and complete backup operation copies the database root (.rdb) file and all
the database pages in all the storage areas in the database, including empty
pages. This is the default Oracle RMU backup operation. Note the following
about full database backup operations:

• Oracle RMU copies enough information (into a single file) to completely
reproduce all the database files and all database pages.

• You must do a full and complete backup (to create a backup file) before you
can perform an incremental backup operation. Oracle Rdb reports an error
if you attempt to perform an incremental backup on a database that has
never been fully backed up.

When a full backup operation creates a backup file for one or more storage
areas, the date and time of the last full backup file created for those storage
areas is updated in the backup file. (See Section 7.14 for information about
displaying backup file information.)

• When you need to recover a database from backup files, you must restore
the full backup file before restoring the last incremental backup file. Each
incremental backup file is assocated with a specific full backup file.

In Example 7–2, a full database backup operation is performed on the
mf_personnel database, copying the database root (.rdb) file and all storage
area (.rda) files into a backup file named mf_pers_full.rbf. (You can specify a
file type other than .rbf if you want.)

• The database root file resides on DB_DISK:[MFPERS] and the storage area
files are distributed on other shared disks in this cluster.

7–32 Backing Up Your Database

• The database backup file resides in the directory
2DUA9:[PERS.BACKUPS]; the logical name DBS_BACKUPS:[MFPERS]
was defined for that directory. Because only a single device is specified
by the logical name DBS_BACKUPS:[MFPERS], only a single thread is
indicated in the log file. The database backup file also includes information
necessary to create the database again and initialize snapshot files when
the database is restored.

The Backup command line in Example 7–2 includes the Log qualifier to display
the results of the full backup operation.

Example 7–2 Starting a Full Database Backup Operation

$ RMU/BACKUP/LOG DB_DISK:[MFPERS]MF_PERSONNEL.RDB -
_$ DBS_BACKUPS:[MFPERS]MF_PERS_FULL.RBF

%RMU-I-BCKTXT_01, Thread 1 file uses devices DBS_BACKUPS:
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK1:[MFPERS]MF_PERS_DEFAULT.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK5:[MFPERS]SALARY_HISTORY.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK2:[MFPERS]RESUME_LISTS.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK6:[MFPERS]EMPIDS_OVER.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK3:[MFPERS]EMPIDS_LOW.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK5:[MFPERS]EMPIDS_MID.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK4:[MFPERS]EMP_INFO.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK6:[MFPERS]RESUMES.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK3:[MFPERS]JOBS.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK3:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-BCKTXT_00, backed up root file DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
%RMU-I-BCKTXT_02, full backup of storage area DISK1:MF_PERS_DEFAULT.RDA;1
%RMU-I-BCKTXT_02, full backup of storage area DISK3:[MFPERS]EMPIDS_LOW.RDA;1
%RMU-I-BCKTXT_02, full backup of storage area DISK5:[MFPERS]EMPIDS_MID.RDA;1
%RMU-I-BCKTXT_02, full backup of storage area DISK6:[MFPERS]EMPIDS_OVER.RDA;1
%RMU-I-BCKTXT_02, full backup of storage area DISK3:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-BCKTXT_02, full backup of storage area
DISK5:[MFPERS]SALARY_HISTORY.RDA;1
%RMU-I-BCKTXT_02, full backup of storage area DISK3:[MFPERS]JOBS.RDA;1
%RMU-I-BCKTXT_02, full backup of storage area DISK4:[MFPERS]EMP_INFO.RDA;1
%RMU-I-BCKTXT_02, Full backup of storage area DISK2:[MFPERS]RESUME_LISTS.RDA;1
%RMU-I-BCKTXT_02, Full backup of storage area DISK6:[MFPERS]RESUMES.RDA;1
%RMU-I-BCKTXT_02, Full backup of storage area
DISK1:[MFPERS]MF_PERS_DEFAULT.RDA;1
%RMU-I-BCKTXT_04, ignored 1 space management page
%RMU-I-BCKTXT_05, backed up 6 inventory pages
%RMU-I-BCKTXT_06, backed up 156 logical area bitmap pages
%RMU-I-BCKTXT_07, backed up 699 data pages
%RMU-I-BCKTXT_11, backup data compression ratio: 0.58

(continued on next page)

Backing Up Your Database 7–33

Example 7–2 (Cont.) Starting a Full Database Backup Operation

%RMU-I-BCKTXT_02, Full backup of storage area DISK5:[MFPERS]SALARY_HISTORY.RDA;1
%RMU-I-BCKTXT_04, ignored 1 space management page
%RMU-I-BCKTXT_05, backed up 0 inventory pages
%RMU-I-BCKTXT_06, backed up 0 logical area bitmap pages
%RMU-I-BCKTXT_07, backed up 126 data pages
%RMU-I-BCKTXT_11, backup data compression ratio: 0.49

.

.

.

Although this example backs up the database to a disk device, Oracle
Corporation recommends that you back up Oracle Rdb databases to tape
devices (see Section 7.3.2.2). You can issue the same RMU Backup command
to back up your database to a tape device if you include the tape device name
as part of your backup file specification. For example, you would enter this
command on a Digital UNIX system:

$ rmu -backup -log -rewind -label=back01 \
> /usr/db_disk/database/mf_personnel.rdb /usr/mf_pers_full_bu.rbf

See Examples 7–11 and 7–12 for descriptions and examples that show how to
write the backup file to one or more tapes on one or more tape drives.

Section 7.13.4 describes how the Oracle RMU backup operation performs its
own tape label processing.

7.8 Performing an Incremental Database Backup Operation
An incremental backup operation copies the database root (.rdb) file and all
database pages that have been updated since the last full backup operation
into a single backup file. Free space on those pages and snapshot pages are
not copied.

Note

You must perform a full backup operation before you can perform an
incremental backup operation.

7–34 Backing Up Your Database

You can incrementally back up all database pages or only selected database
pages, based on the intended use of the backup file. These backups are
specified by the qualifiers shown in the following table:

Command Description

Incremental
Incremental=Complete

Produces an incremental backup file that contains only those pages updated since the last
full and complete backup operation. Entering the Incremental qualifier is the same as
entering the Incremental=Complete qualifier.

Incremental=By_Area Backs up pages for each area that you have updated since the last full (full and complete, or
full and by area) backup operation of that storage area. If multiple storage areas are fully
backed up at different times using this option, then each storage area could have pages
from a different time period. Using this backup strategy to restore multiple storage areas
minimizes the volume of incremental data restored but requires the additional complexity
of restoring each area from the correct full backup operation. This strategy assumes that
your .rdb file is not corrupt. Bringing the database back to its most current state using
by-area backup operations requires an uncorrupted .rdb file.

The incremental option always generates a backup file even when user data
has not changed since the last full backup operation. Every time you perform
an incremental backup operation, the new incremental backup file:

• Replaces any other incremental backup file made since the last full backup
(except when you specify the Incremental=By_Area command qualifier,
because backup files for specific storage areas might contain different
information)

• Contains copies of all database pages changed since the last full backup
operation, including pages contained in any other incremental backup files
made previously

Therefore, you can restore your database to the state it was in at the time of
your most recent incremental backup by first restoring the last full backup
operation and then restoring the last incremental backup operation.

7.8.1 Starting an Incremental Backup Operation
Example 7–3 shows a simple incremental Backup command line for a disk
backup on a Digital UNIX system. In the example, Oracle RMU returns an
error message and exits the backup procedure because a full backup operation
was not performed.

Backing Up Your Database 7–35

Example 7–3 Starting an Incremental Backup Operation

$ rmu -backup -incremental /usr/db_disk/database/mf_personnel.rdb \
> /usr/mf_pers_full_bu.rbf
%RMU-F-NOFULLBCK, no full backup of this database exists

Example 7–4 shows an incremental backup command on OpenVMS that
creates an incremental backup file on a tape device. The tape device name is
included as part of the incremental backup file specification.

Example 7–4 Mounting a Tape Volume and Starting an Incremental Backup Operation

$ ALLOCATE 111MUA0:
$ MOUNT/FOREIGN 111MUA0: %MOUNT-I-MOUNTED, mounted on _111MUA0:

$ RMU/BACKUP/INCREMENTAL /LOG /REWIND /DENSITY=6250 /LABEL=BACK01 -
_$ DB_DISK:[MFPERS]MF_PERSONNEL.RDB 111MUA0:MF_PERS_INCR.RBF

%RMU-I-BCKTXT_01, Thread 1 file uses devices 111MUA0:
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK1:[MFPERS]MF_PERS_DEFAULT.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK5:[MFPERS]SALARY_HISTORY.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK2:[MFPERS]RESUME_LISTS.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK6:[MFPERS]EMPIDS_OVER.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK3:[MFPERS]EMPIDS_LOW.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK5:[MFPERS]EMPIDS_MID.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK4:[MFPERS]EMP_INFO.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK6:[MFPERS]RESUMES.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK3:[MFPERS]JOBS.RDA;1
%RMU-I-BCKTXT_08, Thread 1 was assigned file DISK3:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-BCKTXT_00, Backed up root file DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
%RMU-I-BCKTXT_03, Incremental backup of storage area
DISK1:[MFPERS]MF_PERS_DEFAULT.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK3:[MFPERS]EMPIDS_LOW.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK5:[MFPERS]EMPIDS_MID.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK6:[MFPERS]EMPIDS_OVER.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK3:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK5:[MFPERS]SALARY_HISTORY.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK3:[MFPERS]JOBS.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK4:[MFPERS]EMP_INFO.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK2:[MFPERS]RESUME_LISTS.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK6:[MFPERS]RESUMES.RDA;1
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK1:[MFPERS]MF_PERS_DEFAULT.RDA;1
%RMU-I-BCKTXT_04, ignored 1 space management page
%RMU-I-BCKTXT_05, backed up 0 inventory pages
%RMU-I-BCKTXT_06, backed up 0 logical area bitmap pages
%RMU-I-BCKTXT_07, backed up 0 data pages
%RMU-I-BCKTXT_09, Est. cost to backup relative to a full backup is 0.07
%RMU-I-BCKTXT_10, Est. cost to restore relative to a full restore is 0.01
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK5:[MFPERS]SALARY_HISTORY.RDA;1
%RMU-I-BCKTXT_04, ignored 1 space management page
%RMU-I-BCKTXT_05, backed up 0 inventory pages

(continued on next page)

7–36 Backing Up Your Database

Example 7–4 (Cont.) Mounting a Tape Volume and Starting an Incremental Backup Operation
%RMU-I-BCKTXT_06, backed up 0 logical area bitmap pages
%RMU-I-BCKTXT_07, backed up 0 data pages
%RMU-I-BCKTXT_09, Est. cost to backup relative to a full backup is 0.40
%RMU-I-BCKTXT_10, Est. cost to restore relative to a full restore is 0.01
%RMU-I-BCKTXT_03, Incremental backup of storage area DISK2:[MFPERS]RESUME_LISTS.RDA;1

.

.

.

$ DISMOUNT 111MUA0:
$ DEALLOCATE 111MUA0:

7.8.2 Optimizing Incremental Backup Performance
By default, Oracle RMU optimizes incremental backup operations by scanning
regions of the database that have been updated since the last full backup
operation. This optimization feature is sometimes referred to as a fast-
incremental backup. The identity of changed regions is stored in the database
so that, during an incremental backup operation, only these regions are
scanned for updates. This optimization provides a substantial performance
improvement when database activity is sufficiently low.

However, there is a cost in recording this information in the database. In some
circumstances the cost might be too high, particularly if you do not intend to
use incremental backup operations.

To get around these overhead costs, you can use the [No]Scan_Optimization
qualifier to specify whether or not Oracle RMU should employ scan
optimizations during incremental backup operations. The [No]Scan_
Optimization qualifier allows you to control incremental backup optimization
as follows:

• During an offline, full backup operation:

If You Specify the . . . Then . . .

Scan_Optimization
qualifier

Oracle RMU enables recording of the identities of areas that
change after this backup operation completes. This is the default
setting.

Noscan_Optimization
qualifier

Oracle RMU disables recording of the identities of areas that
change after this backup operation completes.

Backing Up Your Database 7–37

If you do not specify the [No]Scan_Optimization qualifier when you enter
the Backup command, Oracle RMU:

1. Uses the value that you used on the previous Backup command. (That
is, Oracle RMU uses the recording state set by a prior execution of
the Backup command). For example, if you specified the Noscan_
Optimization qualifier on the prior Backup command, the recording
state remains unchanged.

2. Uses the Scan_Optimization qualifier (by default) if you did not
previously specify the Noscan_Optimization qualifier.

• During an online, full backup operation, the [No]Scan_Optimization
qualifier is ignored. Oracle RMU returns an information message
indicating that the [No]Scan_Optimization qualifier is ignored when
you also include the Online qualifier for a full backup operation.

• During an incremental backup operation:

If You Specify the . . . Then . . .

Scan_Optimization
qualifier

Oracle RMU uses the optimization only when Oracle Rdb has
been recording the regions updated since the last full backup
operation.

Noscan_Optimization
qualifier

Oracle RMU does not use the optimization, regardless of whether
Oracle Rdb is recording the identity of the regions updated since
the last full backup operation.

7.8.3 Determining Which Pages Have Changed Since the Last Backup
The Oracle RMU backup operation automatically determines which pages
have changed since the last full backup by comparing the transaction sequence
number (TSN) on each storage area’s SPAM pages against the TSN for the
last recorded full backup operation maintained in the database root file. The
incremental backup operation proceeds depending on the TSN comparison, as
follows:

• When you optimize the backup operation using the Scan_Optimization
qualifier:

If the TSN on the SPAM Page . . . Then . . .

Is higher than the TSN for the last
recorded full backup operation

Oracle RMU reads pages in the SPAM range for
pages that have changed since the last full backup.

7–38 Backing Up Your Database

If the TSN on the SPAM Page . . . Then . . .

Is lower than the TSN for the last
recorded full backup operation

Oracle RMU reads every page looking for pages that
have changed.

• When you do not optimize the backup operation using the Noscan_
Optimization qualifier:

If the TSN on the SPAM page . . . Then . . .

Is higher than the TSN for the last
recorded full backup operation

A copy of those pages is written to the incremental
backup file.

Is lower than the TSN for the last
recorded full backup operation

The database pages in the SPAM interval are
ignored.

This mechanism for comparing TSNs provides for fast, incremental backup
performance compared to checking each page in the entire database to
determine if the highest TSN on the page is a number larger than the TSN of
the last full backup operation.

Note

An incremental backup operation on a storage area does not update
the date and time for the last full backup operation performed on the
storage area that is recorded in the backup file.

7.8.3.1 Looking at Timestamps
You can examine the TSNs manually using the RMU Dump Header command.
For example, to determine when the last full backup operation was performed,
enter the command as shown in Example 7–5.

Backing Up Your Database 7–39

Example 7–5 Determining the Date and Time of the Last Full Backup File

$ RMU/DUMP/HEADER MF_PERSONNEL
.
.
.

Latest full backup file is dated 5-NOV-1995 15:29:37.23 !
Latest full backup transaction sequence number is 76 "
Database has never been incrementally restored
Database has never been fully restored
Latest full verify occurred at 5-NOV-1995 14:07:27.72
Database has never been altered

The information in Example 7–5 appears at the end of the header output.
Notice the following callouts:

! The last full backup operation was on November 5, 1995 15:29:37.23

" The last full backup TSN is 76

Now, enter the RMU Dump command with the Area qualifier to examine the
timestamp, as shown in the command in Example 7–6.

Example 7–6 Displaying an Area to Determine a Timestamp

$ RMU/DUMP/AREA=EMP_INFO /START=1/END=1 DB_DISK:[MFPERS]MF_PERSONNEL
.
.
.

* Dump of storage area EMP_INFO
.
.
.

0008 00000001 0000 page 1, physical area 8 (space mgmt)
03BA800A 0006 checksum = 03BA800A

80000000 00000007 000A Fast incremental backup TSN = 7
0000 03B4 0012 948 free bytes, 0 locked

Pages in the SPAM interval for the SPAM page (on page 1) for the EMP_INFO
storage area file are not backed up by an RMU Backup Incremental command
because there have been no changes made. This is indicated by comparing
the values of the TSNs in Example 7–5 (TSN value is 76) and in Example 7–6
(TSN value is 7). Because the TSN value of 7 from the timestamp is lower
than the TSN value of 76 from the last recorded full backup operations, Oracle
RMU does not make a backup copy of those SPAM pages.

In Example 7–6, note that you could include the Spam qualifier to dump only
SPAM pages.

7–40 Backing Up Your Database

7.8.3.2 Checking By-Area Backup Timestamps
Timestamp information helps you determine the last time a specific storage
area type (read-only, write-once, or read/write) was backed up so you can
restore only one of the storage area types.

Each time the database is completely backed up, either fully or incrementally,
the timestamp is updated in both the database parameters section of the
backup file and the specific root record portion of the database root (.rdb) file.
The timestamp is also updated for each storage area contained in the database
to reflect the time of the most recent backup operation. Similarly, when a
database is restored, fully or incrementally, the timestamp in the .rdb file is
updated.

However, in a by-area backup operation when not all storage areas are backed
up, only the timestamps for those storage areas that are backed up are updated
in the backup and database root file. If one or more storage areas are restored,
the timestamps for these storage areas in the .rdb file are updated. By
checking these timestamps, you can determine when the database was last
backed up or restored. You can also determine when each storage area was
last backed up or restored.

7.8.4 Measuring the Benefits of an Incremental Backup
Output written to the backup log file provides summary statistics (estimated
costs) on a per area basis on the benefit of an incremental backup or
incremental restore operation compared to a full backup or restore operation.

The costs take into account the number of disk I/O operations needed and the
requirement to perform the I/O operation for each area. These disk I/O costs
are approximate because they do not translate directly into ‘‘clock time.’’ The
costs do not consider:

• That each disk type has its own relative costs such as transfer rate, latency,
seek time, and so forth.

• Competition for the disk by other processes.

However, these estimates can help you determine the point at which the
incremental operation is becoming less productive. Use the following table to
analyze the relative costs of the backup operation.

Backing Up Your Database 7–41

When . . . Then . . .

The relative
backup cost is
greater than one

It is more efficient to perform a full backup operation than an incremental
backup operation for the storage area. A value greater than one indicates that
more disk I/O operations are needed to do an incremental backup operation
than are needed to do a full backup operation of the area.

The backup cost
approaches or
exceeds one

Consider performing a full backup operation for your next area backup
operation.

In general, when the relative cost for an incremental by-area restore operation
approaches or exceeds one, you should consider performing a full backup
operation. If you consider that an incremental restore operation must always
follow a full restore operation, the actual cost of restoring the area is one
higher than reported. In addition, if a full restore operation takes 2 hours and
you can only permit the full and incremental restore operation to take 3 hours,
as the restore cost approaches 0.5 you should perform a full backup operation.

In Example 7–4, because the mf_personnel database is such a tiny sample
database and there are no pages to incrementally back up, the estimated costs
reflect some characteristics of the estimation process. The example takes a
single I/O operation to determine the estimated cost for each area. However,
no areas require incremental backup operations; thus the estimates reflect only
the single I/O for cost estimation. This artifact should not be a problem with a
large database and one that contains areas with pages updated since the last
full backup operation.

7.9 Performing a By-Area Backup Operation
By default, the Oracle RMU backup operation backs up all storage areas in the
database. The Oracle Rdb documentation uses the term by-area to refer to a
backup operation that backs up the database root file and only specific storage
areas in a database.

Because most hardware failures result in the loss of only a single disk drive,
restoring only the storage areas on the lost drive and applying transactions
since the last by-area backup presents an attractive alternative to a full
database restore operation. Backing up individual storage areas greatly
facilitates this kind of recovery. Section 7.5.4 discusses strategies to help you
determine if this option is right for your database environment.

Caution

Do not rely on by-area backup (.rbf) files to restore an entire Oracle
Rdb database. Because a by-area backup operation does not back up
all storage areas, your database cannot be fully recovered. You must

7–42 Backing Up Your Database

perform a full backup operation (shown in Example 7–2) in order to
avoid loss of all storage areas in your database.

You specify which storage areas to back up using the Backup command
qualifiers shown in Table 7–12.

Table 7–12 Qualifiers for By-Area Backup Operations

Command Qualifier Description

Include=[storage_area[,...]]1 Backs up only the storage areas you specify.

Exclude=[storage_area[,...]]1 Omits only the storage areas you specify.

No_Read_Only Excludes all read-only storage areas from the backup
operation.

No_Worm Excludes all write-once storage areas from the backup
operation.

1Do not use an asterisk with the Include and Exclude qualifiers (for example, Include=* and
Exclude=*).

You can specify these qualifiers when you perform either a full or an
incremental backup operation. If you do not specify any of the qualifiers
in Table 7–12, Oracle RMU performs a full backup operation. (See the Oracle
RMU Reference Manual manual for complete syntax information.)

Oracle Corporation recommends that you enable after-image journaling when
you perform by-area backup operations on your database. The after-image
journals are crucial to ensure that you can recover all the storage areas in your
database in the event of a system failure. The following table describes the
outcome of a restore operation with and without after-image journaling:

If . . . Then . . .

You do not have after-image
journaling enabled and you
restore one or more storage
areas that are not current
in the restored database

Oracle Rdb does not allow any transactions to use the storage areas
that are not current in the restored database. In this case, you
must restore the database by using the backup file from the last
full backup operation of the database storage areas. Any changes
made to the database since the last full and complete backup
operation are not recoverable.

You have after-image
journaling enabled

Using the RMU Recover command applies transactions from the
after-image journal file to storage areas that are not current after
the RMU Restore operation completes.

The following examples demonstrate some by-area backup operations.

Backing Up Your Database 7–43

Sample By-Area Backup Operations
In the following examples, assume that:

• The DEPARTMENTS storage area is a read-only storage area

• The RESUME_LISTS storage area is a write-once storage area that
contains list data in the mf_personnel database

Also, note the following about the informational and warning messages
returned by the Oracle RMU Backup command:

• The informational message indicates that the backup file is a partial
backup file that does not include all storage areas.

• The warning message indicates that a full backup operation has never
been performed on the database.

1. $ RMU/BACKUP DB_DISK:[MFPERS]MF_PERSONNEL -
_$ /EXCLUDE=(DEPARTMENTS,RESUME_LISTS) -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL_RW.RBF
%RMU-I-NOTALLARE, Not all areas will be included in this backup file
%RMU-W-NOCOMBAC, No full and complete backup was ever performed

This example explicitly excludes the DEPARTMENTS and the RESUME_
LISTS storage areas using the Exclude qualifier. As a result only the
updatable storage areas in the database are backed up. In this example,
you could achieve the same result by substituting the No_Read_Only
and the No_Worm qualifiers for the Exclude qualifier to back up only the
updatable storage areas.

2. $ RMU/BACKUP /INCLUDE=(DEPARTMENTS,RESUME_LISTS) -
_$ DB_DISK:[MFPERS]MF_PERSONNEL -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL_RO.RBF
%RMU-I-NOTALLARE, Not all areas will be included in this backup file
%RMU-W-NOCOMBAC, No full and complete backup was ever performed

This example uses the Include qualifier to back up only the
DEPARTMENTS read-only and RESUME_LISTS write-once storage areas.
All other storage areas are excluded from the backup operations.

3. $ RMU/BACKUP /INCREMENTAL=BY_AREA /INCLUDE=(RESUME_LISTS) -
_$ DB_DISK:[MFPERS]MF_PERSONNEL -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL_RO.RBF
%RMU-I-NOTALLARE, Not all areas will be included in this backup file

This example shows an incremental by-area backup operation of the
RESUME_LISTS write-once storage area. Oracle RMU returns a warning
message whenever you perform a by-area incremental backup operation
and you do not have after-image journaling enabled.

7–44 Backing Up Your Database

To determine if a by-area backup operation is necessary, see Section 7.8.3.2 for
information about determining the last time a specific storage area was backed
up.

7.10 Performing a Parallel Backup Operation
OpenVMS
VAX

OpenVMS
Alpha

Parallel backup uses multiple, multithreaded processes to create one backup
file. These processes, called executor processes, include one coordinator process
and one or more worker processes that optimize the performance of the default
Oracle RMU backup operation. You specify how you want to configure the
executor processes in a parallel backup plan file. Oracle RMU reads the plan
file and executes the backup operation according to the specifications therein.

Table 7–13 describes the steps you use to start a parallel backup operation:

Table 7–13 Preparing for Parallel Backup Operations

Step Procedure Reference

! Ensure that you have installed the Oracle SQL/Services. Oracle SQL/Services Installation
Guide and the
Oracle SQL/Services Release
Notes

" Ensure that the SQL/Services product uses the appropriate network
transport. By default, the RMU Backup command uses DECnet (either
DECnet for OpenVMS or DECnet/OSI) to access SQL/Services:

If . . . Then . . .

DECnet is not available Oracle RMU tries to use the TCP/IP network
transport.

You want to use the TCP
/IP network transport

You can set the configuration parameter,
SQL_NETWORK_TRANSPORT_TYPE, so
that Oracle RMU tries to use the TCP/IP
transport first.

Oracle Rdb7 Installation
and Configuration Guide for
information about setting the
SQL_NETWORK_TRANSPORT_
TYPE configuration parameter.

Select the Power Utilities option when you install the Oracle Rdb software. Oracle Rdb7 Installation and
Configuration Guide

$ Create a parallel backup plan file. Section 7.10.2

% Examine and edit the plan file, if necessary, to customize the parallel
backup operation.

Section 7.10.3

& Execute the plan file to start a parallel backup operation. Section 7.10.2 and Section 7.10.3

(continued on next page)

Backing Up Your Database 7–45

Table 7–13 (Cont.) Preparing for Parallel Backup Operations

Step Procedure Reference

' On a Windows system, use the Parallel Backup Monitor to watch the
progress of the parallel backup operation.

Section 7.10.6

In addition, consider enabling tape loader synchronization to minimize operator
support during a parallel backup operation.

7.10.1 Oracle RMU Commands for Parallel Backup Operations

OpenVMS
VAX

OpenVMS
Alpha

The Oracle RMU utility provides the commands and qualifiers shown in
Table 7–14 to help you start a parallel backup operation.

Table 7–14 Commands and Qualifiers for a Parallel Backup Operation

Command and Qualifier Description

RMU Backup

[No}Execute Specifies whether or not to execute the parallel backup plan file:

• Execute—Creates, verifies, and executes a backup plan file. This is the default.

• Noexecute—Creates and verifies the backup plan file, but it does not execute the
plan.

You must specify the List_Plan and Parallel qualifiers when you use the [No]Execute
qualifier. If you do not, Oracle RMU generates and verifies a temporary parallel backup
plan, deletes the temporary plan, and returns a fatal error message.

List_Plan=output Specifies a name for the generated parallel backup plan file.

(continued on next page)

7–46 Backing Up Your Database

Table 7–14 (Cont.) Commands and Qualifiers for a Parallel Backup Operation

Command and Qualifier Description

RMU Backup

Parallel=
Executor_Count=n

Generates a parallel backup plan file that describes how Oracle RMU should execute
the parallel backup operation. Oracle RMU executes the plan file as soon as it has been
generated (unless you specify Noexecute).

The Parallel qualifier requires the Executor_Count parameter which specifies the number
of worker processes you want enabled for the parallel backup operation. The number you
specify must be less than or equal to the number of tape drives you intend to use.1

Optionally, you can:

• Assign each worker process to a node using the Node=(node_name,node_name)
parameter. If you specify more than one node, all nodes must be in the same cluster
and the database must be accessible from all nodes in the cluster.

• Gather statistics about the parallel backup operation with the Statistics parameter.
You must invoke the Parallel Backup Monitor to view these statistics.

By default, Oracle RMU executes the plan file immediately after generating it. To
generate a parallel backup plan file without executing it, include the Noexecute qualifier
on the RMU Backup command line.

Oracle RMU Backup Plan plan-file

[No]Execute Specifies whether or not you want to execute the parallel backup plan file:

• Execute—Verifies and executes the backup plan file. This is the default.

• Noexecute—Verifies the backup plan file, but it does not execute the plan. The
validity check determines such things as whether the storage area names assigned to
each executor exist.

1Specify Executor_Count=1 to monitor the progress of a non-parallel backup operation using the Parallel Backup
Monitor Windows interface. If you specify Executor_Count=1, Oracle RMU generates a plan file but performs the
default (non-parallel) backup operation.

(continued on next page)

Backing Up Your Database 7–47

Table 7–14 (Cont.) Commands and Qualifiers for a Parallel Backup Operation

Command and Qualifier Description

Oracle RMU Backup Plan plan-file

List_Plan=output Uses an existing parallel backup plan file (specified by Oracle RMU Backup Plan) to
generate and write a new plan file to the output file (specified by List_Plan). The new
plan file is identical to the original plan file with the following exceptions:

• User-added comments in the original plan file are not included in the new plan file.

• Formatting in the new plan file matches the standard format for Oracle RMU Backup
plan files.

♦

7.10.2 Starting a Parallel Backup Operation

OpenVMS
VAX

OpenVMS
Alpha

Example 7–7 shows how you might use the Oracle RMU Backup commands to
create and execute a parallel backup plan file.

Example 7–7 Starting a Parallel Backup Operation

$ REPLY/ENABLE=TAPES!
$ RMU/BACKUP/PARALLEL=(EXECUTOR_COUNT=2", NODE=(NODE1,NODE2)#) -
_$ /LIST_PLAN=(PARALLEL.PLAN) /NOEXECUTE $ MF_PERSONNEL MUA1:MFP.RBF, MUA2%

.

.

.
$ RMU/BACKUP/PLAN PARALLEL.PLAN&

Regarding the commands and qualifiers in Example 7–7:

! Oracle RMU sends all tape requests to the Operator; the parallel backup
operation does not send tape requests to the user who entered the Backup
command. Therefore, you should enter the DCL command, REPLY
/ENABLE=TAPES from the operator terminal before entering the RMU
Backup command.

" The Executor_Count qualifier specifies two worker (executor) processes.

7–48 Backing Up Your Database

The Node qualifier assigns each worker process to a different node. Before
you perform a backup operation in a clustered OpenVMS systems, you
must:

Note

For backup operations on multiple VMScluster nodes, you must:

• Define the logical names SQL_USERNAME and SQL_
PASSWORD

• Provide proxy access (for the user that starts the backup
operation) between all nodes involved in the backup operation

$ The Noexecute qualifier prevents Oracle RMU from executing a parallel
backup operation.

% Each worker process writes to multiple tape drives.

& The RMU Backup Plan command executes the plan file (parallel.plan)
created with the RMU Backup command.

Example 7–7 creates the parallel backup plan file shown in Section 7.10.3. ♦

7.10.3 Parallel Backup Plan File

OpenVMS
VAX

OpenVMS
Alpha

When a parallel backup operation executes, it reads a file called a plan file that
contains information about the backup operation and how the backup operation
is split across processes. When you specify the plan file, Oracle RMU executes
the parallel backup operation according to the specifications in the plan.

In addition to providing information about the type of backup (online or offline,
full or incremental, by-area, and so forth), the plan file contains information
about each process in the plan and the work it performs. On clusters, the
processes can be on different nodes in the cluster.

Oracle RMU generates a plan file automatically if you specify the List_Plan
qualifier on the RMU Backup command, or you can create a plan file manually
using an editor. If you use Oracle RMU to generate a list plan, you can
also include the Noexecute qualifier to generate a plan file without actually
performing a backup operation. Also, the Noexecute qualifier is useful for
performing a validity check on the plan file. Then, you can edit the plan file
before performing a parallel backup operation.

Backing Up Your Database 7–49

Example 7–8 shows a sample plan file.

Example 7–8 Parallel Backup Plan File

! Plan created on 5-JUL-1995 by RMU/BACKUP.

Plan Name = B Plan Type = BACKUP

Plan Parameters: !
Database Root File = MF_PERSONNEL
Backup File = MFP.RBF
! Journal = specification for journal file
! Tape_Expiration = dd-mmm-yyyy
! Active_IO = number of buffers for each tape
! Protection = file system protection for backup file
! Block_Size = bytes per tape block
! Density = tape density
! [No]Group_Size = number of blocks between XOR blocks
! Lock_Timeout = number of second to wait for locks
! Owner = identifier of owner of the backup file
! Page_Buffers = number of buffers to use for each storage area
NoChecksum_Verification
NOCRC
NoIncremental
Log
NoOnline
Quiet_Point
NoRewind
ACL
! [No]Scan_Optimization
! Labels = list of tape labels

End Plan Parameters

! Coordinator Process "
Executor Parameters :

Executor Name = COORDINATOR_EXECUTOR
Executor Type = Coordinator

End Executor Parameters

! Worker Processes #
Executor Parameters :

Executor Name = EXECUTOR_001
Executor Type = Worker
! Executor Node = Node name for worker

(continued on next page)

7–50 Backing Up Your Database

Example 7–8 (Cont.) Parallel Backup Plan File

Backup Storage Areas = (-
MF_PERS_SEGSTR, -
DEPARTMENTS, -
EMPIDS_LOW, -
EMPIDS_MID, -
EMPIDS_OVER, -
EMP_INFO, -
JOBS, -
SALARY_HISTORY, -
RDB$SYSTEM)

Tape Drive List
Tape Drive = 111MUA20:

Master
! Labels = list of tape labels
Tape Drive = 111MUA22:

Master
! Labels = list of tape labels

End Tape Drive List

Executor Name = EXECUTOR_002
.
.
.

End Executor Parameters

! The beginning of the plan file contains the names of the root file and the
backup file as well as the global parameters for the backup operation.

" This section contains information about the coordinator process. The
first process described in a plan file must be the coordinator process.
Currently, the only information about the coordinator process is its name,
COORDINATOR_EXECUTOR.

This section contains information about the two worker processes. For
each of these worker processes, the plan contains the list of storage areas
to back up and the names of the tape drives used by the worker process.
Optionally, for cluster systems, you can specify the node on which the
worker process is to run.

The master tape drive listed for the first worker process is the drive that
will be the first logical volume of the backup file. All the header and
database root information is written to the first volume.

Backing Up Your Database 7–51

When you generate a plan file with the RMU Backup command, Oracle RMU
executes the plan file immediately after it is created. Also, you use the RMU
Backup Plan command to execute a plan file generated with the new List_Plan
qualifier of the RMU Backup command, or created manually with an editor.

Note

Do not allocate or mount any tapes manually. Oracle RMU
automatically allocates and mounts tapes during the parallel backup
procedure.

All worker processes coordinate with the coordinator process to get tape label
names and to synchronize tape loading. After loader synchronization in a
parallel backup, the first tape drive in the first worker process goes first,
followed by the second tape drive for the first worker process, and so on until
all tape drives for the first worker process have started. The next drive to go is
the first drive for the second worker process, followed by the second drive for
the second worker process, and so on.

If any worker process ends prematurely, all other worker processes stop. ♦

7.10.4 What Happens During a Parallel Backup Operation?

OpenVMS
VAX

OpenVMS
Alpha

The following table describes how Oracle RMU performs a parallel backup
operation.

7–52 Backing Up Your Database

Step Action

! The command you specify (either RMU Backup Parallel or RMU Backup Plan) generates a plan file, if
necessary, for the parallel backup operation. The plan file is generated as follows:

• Each worker process is assigned a name. For example, EXECUTOR_001, EXECUTOR_002, and so on.

• Each worker process is assigned a node if the plan file specifies more than one node. Nodes are assigned
to each worker process, using the following algorithm:

If . . . Then . . .

You specify the same
number of nodes
as there are worker
processes

Each worker process is assigned a node. If you specify three nodes and three
worker processes, the first node that appears in your node name list is assigned
to the first worker process, the second node in the list is assigned to the second
worker process, and so on.

You specify fewer nodes
than worker processes

Nodes are assigned using a round-robin approach. For example, if you specify
Nodes=(ONE,TWO) and Executor_Count=3, then EXECUTOR_001 is assigned to
node ONE, EXECUTOR_002 is assigned to node TWO, and EXECUTOR_003 is
assigned to node ONE.

You do not specify a list
of nodes

The backup operation uses the node from which the command is entered. Nodes
are assigned to the worker processes using the round-robin approach described
previously.

• Each tape drive is assigned to a worker process.

Each tape drive is assigned to a worker process using the round-robin approach. If you specify three tape
drives and three worker processes, the first tape drive that you specify is assigned to the first worker
process, the second tape drive to the second worker process, and so on. The number of tape drives must
match the number of worker processes.

If the tape drives are not accessible from all nodes in your cluster, use the algorithm (described in the
table in step 4) for assigning nodes and tape drives to worker processes. Ensure that nodes and tape
drives will be correctly matched when the coordinator process assigns them to each worker process.
Alternatively, you can specify the Noexecute qualifier and edit the plan file to reassign the tape drives
and nodes appropriately. Then execute the plan file using the RMU Backup Plan command.

• Each storage area (partition) to be backed up is assigned to a worker process.

Oracle RMU sorts the storage areas to be backed up by size, and then assigns them, in a round-robin
manner, to each worker process. The root file is always backed up by the first worker process. All areas
in the database are assigned to a worker process unless you use the Include, Exclude, No_Worm, or
No_Read_Only qualifiers.

" Oracle RMU verifies the generated plan file, including ensuring that the nodes, tape drives, and storage area
names for the specified database exist.

Backing Up Your Database 7–53

Step Action

Oracle RMU executes the plan file (unless you include the Noexecute qualifier) as follows:

1. Your process notifies Oracle SQL/Services that a parallel backup operation is about to be performed.

2. Using the RMU$SRV70 account1, Oracle SQL/Services creates a coordinator process that serves as the
backup operation execution manager, and creates the number of worker processes specified in the plan
file. The coordinator and worker processes change identities to run as the user executing the parallel
backup operations.

3. Each worker process requests a tape label from the coordinator process for the first tape label, and makes
additional requests for tape labels each time a worker process requires a new tape and tape label.

4. Oracle RMU allocates and mounts each tape.

5. The first worker process backs up the database root file before any other worker processes can begin.

6. Once the database root file is backed up, each worker process backs up its assigned storage areas (as
defined in the plan file) using its assigned tape drives.

$ Oracle RMU dismounts and unloads all the tapes when the backup operation is complete.

1The RMU$SRV70 account is created automatically when you install the Oracle SQL/Services software. The
RMU$SRV70 account is required for parallel backup operations. Refer to the Oracle SQL/Services Release Notes
for more information.

♦

7.10.5 Using Loader Synchronization When Performing a Parallel Backup
Operation

OpenVMS
VAX

OpenVMS
Alpha

The Loader_Synchronization qualifier allows you to preload tapes and preserve
tape order to minimize the need for operator support. The following example
demonstrates how the backup operation proceeds when you specify the Loader_
Synchronization qualifier and the Parallel qualifier with the Oracle RMU
Backup command.

The following list describes how Oracle RMU synchronizes tape loading
and labeling. The backup scenario described includes three parallel worker
processes, and each worker process is assigned three tape drives:

1. EXECUTOR_001 begins backing up to its three tape drives in succession,
using tape labels 001, 002, and 003.

2. Concurrently, EXECUTOR_002 begins backing up to its three tape drives
in succession, using tape labels 004, 005, and 006.

3. Concurrently, EXECUTOR_003 begins backing up to its three tape drives
in succession, using tape labels 007, 008, and 009.

7–54 Backing Up Your Database

4. Assume EXECUTOR_002 fills one tape on each drive first. It reports this
status to the coordinator process.

5. The coordinator process directs EXECUTOR_002 to wait. Likewise, when
EXECUTOR_003 fills its first three tapes, the coordinator directs it to wait,
and so on.

6. The coordinator process allows each worker process to resume backup
operations only when each executor has filled its first three tapes.

This procedure ensures that you can correctly match the tape labels to the
backup tapes.

See Section 7.13.2.3 for additional information about the use of the Loader_
Synchronization qualifier. ♦

7.10.6 Monitoring the Progress of a Parallel Backup Operation

OpenVMS
VAX

OpenVMS
Alpha

If you enabled the Statistics option when you entered the RMU Backup Parallel
command, you can monitor the progress of the parallel backup operation on
your Windows system using the Parallel Backup Monitor. The Parallel Backup
Monitor is a Windowing interface that runs on Windows 3.1, Windows 95,
Windows Intel Alpha 3.51, and Windows Intel NT 3.51.

Note

You can use the Parallel Backup Monitor Windows interface to
monitor the progress of the default (non-parallel) backup operation.
Do this by starting the backup operation with the RMU Backup
Parallel=Executor_Count=1 Statistics command. Oracle RMU
generates a plan file that specifies one worker process, and gathers
statistics as it performs a default (non-parallel) backup operation.
Then, you can monitor the progress of the operation using the Parallel
Backup Monitor.

See the Oracle SQL/Services Installation Guide and the Oracle SQL/Services
Release Notes for more information about installing and using SQL/Services.
Also, see Windows help for information about using the Parallel Backup
Monitor. ♦

Backing Up Your Database 7–55

7.11 Performing Online Backup Operations
Oracle RMU provides the capability to perform online backup operations. This
is essential in situations where the database must remain available to users,
and it is unacceptable to take the database off line to perform maintenance
operations.

You can perform either a full, incremental, or parallel backup operation while
your database is on line. You do not need to close the database or deny access
to users in order to perform an Oracle RMU backup operation. The Oracle
RMU online backup operation permits concurrency with all other types of
transactions except read/write exclusive or batch-update transactions.

Concurrent access is made possible through the use of snapshot files. By using
the snapshot files, the online Oracle RMU backup operation lets you back up
a consistent view of the database while allowing users to continue update
operations. The following list describes what happens during an online backup
operation:

• Oracle RMU starts a read-only transaction on the database to ensure
that it sees the data records as they were at the time the transaction was
started. Snapshots ensure that read-only transactions can see a consistent
view of the data while update transactions modify records. The read/write
exclusive and batch-update transactions are not allowed because neither
transaction type causes before-images of updated rows or records to be
written to snapshot files.

• Oracle RMU takes out a quiet-point lock and waits for all active read/write
transactions to complete; the online Oracle RMU backup operation proceeds
when the database reaches a quiet point (a moment when there are no
active read/write transactions). The benefit of waiting for the quiet point
is that there can be no lock conflicts or deadlocks that may prevent the
backup operation from proceeding. Section 7.11.1 describes quiet-point
locks in more detail.

Table 7–15 describes how to start an online backup operation.

7–56 Backing Up Your Database

Table 7–15 Starting an Online Backup Operation

Procedure Description

Determine
if snapshot
files are
enabled

To determine if the database has snapshot files enabled or disabled, use the RMU Dump command with
the Header qualifier, as shown in the following example, and inspect the snapshot parameter setting
for any storage area.

$ RMU/DUMP/HEADER DB_DISK:[MFPERS]MF_PERSONNEL.RDB

.

.

.
Snapshots...

- Snapshots are disabled
- Snapshot area ID number is 11

If snapshot files are disabled when you issue an RMU Backup Online command, Oracle RMU returns
an error.

(continued on next page)

Backing Up Your Database 7–57

Table 7–15 (Cont.) Starting an Online Backup Operation

Procedure Description

Enable
snapshot
files

Snapshot files make it possible to perform Oracle RMU backup operations while the database is on line
and accessible to users. If snapshot files are disabled, change the setting to enable snapshots:

1. Close the database to restrict access.

2. Enter the SQL ALTER DATABASE statement, as shown in the following example:

$ SQL = "SQL"
$
$ -- Use ALTER DATABASE statement to set OPEN IS MANUAL.
$ SQL
SQL> ALTER DATABASE FILENAME DB_DISK:[MFPERS]MF_PERSONNEL
cont> OPEN IS MANUAL;
SQL> EXIT
$! Determine how many users are attached to the database; then
$! determine the best way to close the database - let users
$! complete their transactions first, then close the database.
$
$ RMU/DUMP USERS DB_DISK:[MFPERS]MF_PERSONNEL
$
$! Close the database by using a Noabort qualifier.
$
$ RMU/CLOSE DB_DISK:[MFPERS]MF_PERSONNEL /NOABORT /CLUSTER
$
$! Check to see that all transactions are complete and no users
$! are attached to the database.
$
$ RMU/DUMP USERS DB_DISK:[MFPERS]MF_PERSONNEL
$
$! Enable .snp files.
$
$ SQL
SQL> ALTER DATABASE FILENAME DB_DISK:[MFPERS]MF_PERSONNEL
cont> SNAPSHOT IS ENABLED;
SQL> EXIT
$
$! Open the database by entering RMU Open command.
$
$ RMU/OPEN DB_DISK:[MFPERS]MF_PERSONNEL

Start the
backup
operation

After you enable snapshot files and open the database again, start an online backup operation by
including the Online qualifer on the RMU Backup command line:

$ RMU/BACKUP/ONLINE DB_DISK:[MFPERS]MF_PERSONNEL.RDB -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL_FEB22.RBF

After the online Oracle RMU backup operation has started, users can invoke
the database and begin new transactions, as long as they do not require
exclusive access to the database, a table or view, or an index structure that is
currently being backed up.

7–58 Backing Up Your Database

7.11.1 Avoiding Lock Conflicts
By default, an online backup operation acquires a quiet-point lock when the
operation begins. This causes Oracle RMU to wait for all active transactions to
complete before the backup operation begins. The following sections describe
using the Quiet_Point and Noquiet_Point qualifiers.

Acquiring Quiet Point Locks
An online backup operation acquires the quiet-point lock for a time when the
backup operation begins. This can cause a brief interruption in the database
activity, so you should schedule its use accordingly.

When Oracle RMU attempts to acquire the quiet-point lock, it inhibits the
initiation of new database transactions until the lock is released. Oracle RMU
acquires the lock upon completion of the update transactions that were active
when the lock was requested. The lock is held for only a few seconds, just long
enough for the backup operation to acquire a consistent image of the database
root file internal structures.

Section 7.11.2 describes how to control the interval of time that Oracle RMU
waits for a quiet point.

Using the Noquiet_Point Qualifier
As another option, you can specify the no-quiet-point online backup operation
if you are sure there are no lock conflicts between the online backup operation
and your concurrently running application.

Use the Noquiet_Point qualifier so that Oracle RMU can proceed with the
backup operation as soon as you enter the Backup command. However, you
must make certain that there are no active transactions using exclusive locks.

Note

If you specify the Noquiet_Point qualifier, Oracle RMU takes out a
lock but there is a risk of lock conflict. If Oracle RMU cannot acquire
concurrent-read locks on all physical and logical areas, the online
backup operation fails with a lock conflict. Also, you must keep the
after-image journal files from the last quiet-point backup operation or
offline backup operation.

Backing Up Your Database 7–59

Quiet_Point and Noquiet_Point Trade-Offs
As you devise an overall backup strategy for your database and after-image
journal files, you might want to consider using a combination of Quiet_Point
and Noquiet_Point qualifiers.

For example, although a noquiet-point backup operation is faster than a
quiet-point backup operation, it usually results in a longer recovery operation.
This is because transactions can span after-image journal files when you
specify the RMU Backup After_Journal Noquiet_Point command. Thus, you
might have to apply numerous .aij files to recover the database. In a worst-
case scenario, this could extend back to your last quiet-point after-image
journal or database backup operation. If you rarely perform quiet-point backup
operations, recovery time could be excessive.

To balance these trade-offs, consider performing regularly scheduled quiet-
point after-image journal backup operations followed by noquiet-point database
backup operations. (Conversely, you could perform a quiet-point backup
operation on the database followed by noquiet-point backup operation on the
after-image journal. However, a quiet-point backup of the after-image journals
usually takes less time than a quiet-point backup of the database.) Periodically
performing a quiet-point after-image journal backup operation helps to ensure
that your recovery time does not become excessive.

7.11.2 Setting Lock Timeout Intervals
If you do not want an online backup operation to wait indefinitely to acquire
the quiet-point lock, you can control how long the RMU backup operation waits
by including the Lock_Timeout qualifier on the RMU Backup command.

For example, suppose it is important that your database be incrementally
backed up every 12 hours, and from experience you notice that this event
usually begins within 5 minutes of the designated start time and requires
about 1 hour to complete. A command procedure automatically starts this
online incremental backup operation twice each day. If a quiet-point lock
cannot be acquired and the backup operation does not begin within 5 minutes,
you want to be notified so you can investigate further and decide the best
course of action to take.

To do this, set the lock timeout interval to 300 seconds, as shown in
Example 7–9, and then have your command procedure send you mail notifying
you that either the backup operation was successful or it never started because
the lock timeout interval was exceeded.

7–60 Backing Up Your Database

Example 7–9 Setting the Lock Timeout Interval to 300 Seconds

$ RMU/BACKUP/ONLINE/INCREMENTAL/LOG /LOCK_TIMEOUT=300 -
_$ DB_DISK:[MFPERS]MF_PERSONNEL.RDB -
_$ DBS_BACKUPS:[MFPERS]PERS_INC_FEB7_1200.RBF

Example 7–10 Starting an Offline Backup Operation When a User Is
Attached to the Database

$ RMU/BACKUP DB_DISK:[MFPERS]MF_PERSONNEL.RDB -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL.RBF
%RMU-F-FILACCERR, error opening database root file

DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

The Noonline qualifier is the default for the RMU Backup command. If you try
to issue a backup command against an attached database, (that is, a database
in which one or more users have invoked the SQL ATTACH statement)
without specifying the Online qualifier, you receive the error message shown in
Example 7–10.

7.12 Backing Up a Database to a Disk Device
Although Oracle RMU is optimized to perform Oracle Rdb database backup
operations to tape, there may be circumstances where you want to back up to
disk.

If you back up an Oracle Rdb database to a disk device, remember to locate
the database root file and the backup file on separate disks. If the disk device
where the database root file resides suffers a hardware failure (disk head
failure, for instance), the backup file is useless if it too resides on the corrupt
disk. You do not want to risk losing both your database and your backup files
if you lose a disk.

Disk Backup on OpenVMS Systems

OpenVMS
VAX

OpenVMS
Alpha

If you choose to perform an Oracle RMU backup operation to disk, estimate
the size of the backup file and set the OpenVMS Record Management System
(RMS) to have a large extent size. Try to size the extents so that the entire
backup file fits in a few extents while not wasting disk space.

Backing Up Your Database 7–61

For example, find the size of your most recent full backup file:

$ DIRECTORY/SIZE=ALL FULL_BACKUP_MONDAY.RBF
Directory DISK$A:[ORACLEUSER]

FULL_BACKUP_MONDAY.RBF;1 1449/1449

Total of 1 file, 1449/1449 blocks.

Then, set the extent size so that the backup file fits in two extents:

$ SET RMS_DEFAULT/EXTENT=750

♦

7.13 Backing Up a Database to Tape Devices
Oracle RMU is optimized for backing up Oracle Rdb databases to tape media.
Oracle RMU support for multiple output threads and its ability to balance I/O
across all storage areas result in the best possible performance for database
backup.

There are several ways of backing up directly to tape:

• Back up the database to one tape drive, onto one or more tape volumes
loaded sequentially.

• Back up the database to multiple tape drives, onto multiple tape volumes
loaded concurrently among all master drives and loaded concurrently
among all slave drives but sequentially between master and slave drives.

• Back up the database to multiple tape drives, onto multiple tape volumes
loaded concurrently among all tape drives.

In general, you should use a single tape drive for backing up small databases
that may all fit on one tape or when there is only one tape drive on the system.
Use multiple tape drives and tape controllers for backing up moderate to very
large databases and when two or more tape controllers and two or more tape
drives are part of each tape controller in the system.

Note

Do not use more than a total of 17 characters in the file name and
extension. Otherwise, the file name is truncated to the first 17
characters and is stored without the .rbf extension.

7–62 Backing Up Your Database

7.13.1 Mounting One or More Tapes on a Single Tape Drive
When your configuration has only one tape drive, you can back up a database
directly to one or more tapes on that drive by using the following procedure:

Step Action

! †Allocate the tape drive.

" †Mount the tape as a foreign volume.

Perform the backup operation.

$ If you are using only one tape, rewind the tape to prepare for verifying the backup file.
Ignore this step if you are not verifying the backup file.

% If you need to mount two or more tapes on the tape drive, dismount the last tape and
mount the first tape to prepare for verifying the backup file. Ignore this step if you are
not verifying the backup file.

& If you experience hardware or media errors during the backup operation, verify the
backup file. The RMU Dump Backup_File command detects media errors, but it does not
verify contents of the backup.

' †Dismount the tape.

(†Deallocate the tape drive.

†Applies to OpenVMS systems that do not use parallel backup operations.

Example 7–11 shows the procedure to back up the mf_personnel database to
one tape.

Example 7–11 Performing a Full Backup Operation to One Tape

$ RMU/VERIFY DB_DISK:[MFPERS]MF_PERSONNEL
$
$ ALLOCATE 111MUA0:
$ MOUNT/FOREIGN 111MUA0:
$ RMU/BACKUP /LOG /REWIND /DENSITY=6250 /LABEL=BACK01 -
_$ DB_DISK[MFPERS]MF_PERSONNEL.RDB 111MUA0:PERS_FULL.RBF
$
$! The Rewind qualifier rewinds the tape to the beginning and
$! initializes the tape at 6250 bits per inch as specified
$! by the Density=6250 qualifier and gives it a label of BACK01 as
$! specified in the Label qualifier. Then the backup file named
$! pers_full.rbf is created and written to this output volume.
$! Note: If the label on the tape does not match the label specified
$! in the Label qualifier, you receive a message and are asked what
$! course of action to follow. See Section 7.13.4
$! for information about checking tape labeling.

(continued on next page)

Backing Up Your Database 7–63

Example 7–11 (Cont.) Performing a Full Backup Operation to One Tape

$
$! If you want to check the tape for media errors, enter the next two
$! commands to rewind the tape and begin media error detection.
$! Otherwise, skip to the next step to dismount the tape.
$
$ SET MAGTAPE/REWIND
$ RMU/DUMP/BACKUP_FILE 111MUA0:PERS_FULL.RBF
$
$! When the operating system default prompt returns and no error messages
$! are displayed, verification is complete.
$
$ DISMOUNT 111MUA0:
$ DEALLOCATE 111MUA0:

In Example 7–11 a single tape drive 111MUA0: is used. The Rewind,
Density=6250, and Label=BACK01 qualifiers indicate that the tape is to be
rewound to the beginning, initialized at 6250 bits per inch and given a label
of BACK01; then, the backup file named pers_full.rbf is created and written
to the tape. If the volume label disagrees with the label specified by the Label
qualifier or by the default (the backup file name), an informational message
displays.

Caution

If you back up two or more databases in succession to the same tape,
do not use the Rewind qualifier in your second and subsequent RMU
Backup commands. This qualifier rewinds and reinitializes the tape,
destroying all existing backup files on the tape. Specify the Norewind
qualifier or none at all (the default is Norewind) to ensure that the next
database backup file created starts at the current end-of-tape (EOT).

If you have a large database, you may need more than one tape to hold the
database backup file. In this case, you are prompted to mount additional
tapes as each fills up until the backup procedure is completed. (If you run the
backup operation as a batch job, Oracle RMU notifies the operator using an
OPCOM message.)

You must dismount the last tape and mount the first tape again to verify the
backup file. Also, when you verify the backup file, you are requested to mount
each tape in sequence to complete the RMU Dump Backup_File operation.
Using two tapes for a backup operation is shown in Example 7–12.

7–64 Backing Up Your Database

Example 7–12 Performing a Full Backup Operation to Multiple Tapes
Mounted on a Single Tape Drive

$ RMU/VERIFY DB_DISK:[MFPERS]MF_PERSONNEL
$
$ ALLOCATE 111MUA0:
$
$ MOUNT/FOREIGN 111MUA0:
$ RMU/BACKUP /LOG /REWIND /DENSITY=6250 /LABEL=(BACK01,BACK02) -
_$ DB_DISK[MFPERS]MF_PERSONNEL.RDB 111MUA0:PERS_FULL.RBF
$
$! Mount the next volume, physically remove BACK01, and place another
$! unused volume on the tape drive. This volume is given the label
$! BACK02.
$! Note: If the label on the tape does not match the label specified
$! in the Label qualifier, you receive a message and are asked what
$! course of action to follow. See Section 7.13.4
$! about checking tape labeling for more information.
$
$! Dismount the second tape in order to mount the first tape again
$! in preparation for verifying the backup file. Dismount the first tape
$! and mount the second tape when prompted to do so. Ignore these steps
$! if you are skipping the next step.
$!
$ DISMOUNT 111MUA0:
$ MOUNT/FOREIGN 111MUA0:
$
$! Mount the first volume, BACK01. Then mount the next volume BACK02
$! in sequence as requested. When the operating system default prompt
$! returns and no error messages are displayed, verification is complete.
$!
$ RMU/DUMP/BACKUP_FILE 111MUA0:PERS_FULL.RBF
$
$ DISMOUNT 111MUA0:
$ DEALLOCATE 111MUA0:

As the backup operation proceeds, be sure to mark each tape with the tape
label after it is dismounted. In addition, you should mark the first tape with
the date and time the backup file was created.

7.13.2 Using Multiple Tape Drives
If your system is configured with two or more tape drives, you can back up a
database directly to two or more tapes on each tape drive with the following
procedure:

Backing Up Your Database 7–65

Step Action

! †Allocate each tape drive.

" †Mount the first tape on each drive.

Perform the backup operation.

$ Ignore this step if you are not verifying the backup file.

If you need to mount two or more tapes sequentially on the same tape drive, dismount
the last tape and mount the first tape on each tape drive.

% If you experience hardware or media errors during the backup operation, verify the
backup file. The RMU Dump Backup_File command detects media errors, but it does not
verify save-set contents.

& †Dismount the last tape.

' †Deallocate each tape drive.

†OpenVMS only.

This multiple-step procedure is shown in Example 7–13.

Example 7–13 Performing a Full Backup Operation to Multiple Tapes
Mounted on Multiple Tape Drives

$ RMU/VERIFY DB_DISK:[MFPERS]MF_PERSONNEL
$ ALLOCATE 111MUA0:
$ ALLOCATE 222MUA1:
$ MOUNT/FOREIGN 111MUA0:
$ RMU/BACKUP /LOG /REWIND /DENSITY=6250 /LABEL=(BACK01,BACK02) -
_$ DB_DISK:[MFPERS]MF_PERSONNEL.RDB -
_$ 111MUA0:PERS_FULL.RBF,222MUA1:

$! Note: If the label on the tape does not match the label specified
$! in the Label qualifier, you receive a message and are asked what
$! course of action to follow. See Section 7.13.4
$! about tape labeling for more information.
$
$ DISMOUNT 111MUA0:,222MUA1:
$ MOUNT/FOREIGN 111MUA0:

(continued on next page)

7–66 Backing Up Your Database

Example 7–13 (Cont.) Performing a Full Backup Operation to Multiple Tapes
Mounted on Multiple Tape Drives

$!
$! Ignore these steps if you are skipping the next step.
$! Dismount the second tape on each tape drive in which there is more
$! than one tape in order to mount the first tape again in preparation
$! for verifying the backup file.
$!
$ RMU/DUMP/BACKUP_FILE 111MUA0:PERS_FULL.RBF,222MUA1:
$ DISMOUNT 111MUA0:,222MUA1:
$ DEALLOCATE 111MUA0:
$ DEALLOCATE 222MUA1:
$!
$! Dismount the first tape and mount the second tape when prompted to do so.
$!

In Example 7–13, the database fits on two tapes. Because each tape is
configured to a different drive, each tape is written to simultaneously in a
multithreaded backup operation, and each is seen as a master tape drive. This
is the preferred backup method for very large databases. If more than one tape
is required per tape drive, Oracle RMU generates labels (or you can specify all
labels in the Label qualifier), in sequence. As each tape fills up, Oracle RMU
prompts you to mount the next volume in sequence. If both tape devices are
configured to the same drive, a master/slave arrangement is assumed and each
tape is written to in sequence, not simultaneously.

7.13.2.1 Using Concurrent Tape Drives Efficiently
If you are using two or more tape drives, Oracle RMU attempts to determine an
efficient concurrent use of the drives. To this end, Oracle RMU assigns some of
the drives as masters and some as slaves. Oracle RMU is designed to optimize
backup performance and automatically load balance the I/O operations.
However, Oracle RMU provides the Master, Loader_Synchronization, and
Journal qualifiers for the Backup command to manage tape labeling and
assignments.

In addition, for very large backup operations requiring many tape volumes,
you might consider purchasing one of the storage library or archiving products
available. These product are available to automatically manage tape labeling
for you.

The following sections describe the Master, Loader_Synchronization, and
Journal qualifiers.

Backing Up Your Database 7–67

7.13.2.2 Controlling Tape Concurrency with the Master Qualifier
When you have several tape control units (TCUs), each of which contains
several tape drives, you should use the Master qualifier to explicitly assign
which tape drives are master tapes. Oracle RMU associates each master tape
drive with a particular backup output thread. This strategy not only gives
you more control over the level of tape concurrency, it also eliminates any
uncertainty about which tape drives are masters and which are slaves.

Note

The output performance of the backup operation decreases considerably
if you use the Master qualifier on a tape drive that is not a master tape
drive.

Drives that are not specified as master drives are treated as slave drives. If
you specify all drives as master drives, the Oracle RMU backup operation will
write to all drives concurrently.

Oracle Corporation recommends that you use the Master qualifier in
conjunction with the Loader_Synchronization qualifier (described in
Section 7.13.2.3. If you specify the Master qualifier without also specifying
the Loader_Synchronization qualifier on sets of tape drives, each master and
slave set of tape drives will operate independently of other master and slave
sets. For example, suppose you have two tape control units, TCU-A and
TCU-B:

• TCU-A has drive1 and drive2

• TCU-B has drive3 and drive4.

If you specify drive1 and drive3 as master tape drives, then Oracle RMU begins
writing to drive1 and drive3 concurrently, while drive2 and drive4 remain idle.
When the volume on drive1 fills, Oracle RMU switches over and writes the
next volume on drive2. Similarly, when a volume fills on drive3, Oracle RMU
writes the next volume on drive4. When a volume on drive2 or drive4 fills,
Oracle RMU begins a new volume on drive1 or drive3, respectively.

7–68 Backing Up Your Database

7.13.2.3 Preloading Tapes Using Load Synchronization
For large backup operations, you can minimize the need for operator support
by using the Loader_Synchronization qualifier to preload tapes into loaders or
stackers for concurrent tape drive operation. Loader synchronization ensures
that the tape order can be preserved in the event that a restore operation from
these tapes becomes necessary.

When you use the Loader_Synchronization qualifier, Oracle RMU labels the
volumes following the order of tape drives specified in the RMU Backup
command. During the backup operation, Oracle RMU writes to the first set
of tape volumes concurrently then waits until each tape in the set is finished
before assigning the next set of tape volumes. That is, rather than mounting
the next tape on the first drive that becomes idle, Oracle RMU waits until all
the drives become idle and mounts all the tapes at once. This ensures that the
tapes can be loaded into the loaders or stackers in the order required by the
restore operation as specified with the Label qualifier.

Use of the Master qualifier with the Loader_Synchronization qualifier is
meaningful when you are using several tape control units (TCUs), each of
which contains several tape drives. For example, suppose you have two tape
control units, TCU-A and TCU-B:

• TCU-A has drive1 and drive2

• TCU-B has drive3 and drive4

If you specify all four drives as masters, the RMU backup operation will write
to all four drives concurrently. If you specify drive1 and drive3 as master
drives, they will be written to concurrently and drive2 and drive4 will remain
idle until both drive1 and drive3 have finished. The switch to drive2 and
drive4 will occur concurrently when tapes on drive1 and drive3 are both full.

Use of the Loader_Synchronization qualifier can result in reduced perfor-
mance. Note the following about backup performance when you use loader
synchronization:

• To enhance backup performance, do not let any drive remain idle. The
operator should place the next identified volume on the first drive that
becomes idle. However, because the order in which the drives become idle
depends on many uncontrollable factors and cannot be predetermined, the
drives cannot be preloaded with tapes.

• Because the cost of using the Loader_Synchronization qualifier is
dependent on the hardware configuration and the system load, the
cost is unpredictable. A 5% to 20% additional elapsed time for the
operation is typical. You must determine if the benefit of a lower level

Backing Up Your Database 7–69

of operator support compensates for the loss of performance. The Loader_
Synchronization qualifier is most useful for large backup operations.

• The following case might lead to unexpected results in tape drive
utilization:

When you specify the RMU Backup command with the Loader_
Synchronization qualifier, Oracle RMU tries to determine the load and
divide it evenly (based on storage area size) among the tape drives prior
to actually beginning to write to tape. However, suppose that one large
storage area has very little data in it. Furthermore, assume that you have
allocated three tape drives. Because Oracle RMU predetermines the order
in which the storage areas are backed up to tape, it could result in an
uneven distribution of write I/Os (for example, only one storage area being
written on the first drive, three to the second drive, and three to the third
drive) or some drives might remain idle unexpectedly. Moreover, the second
and third drives will not have the labels that you expect.

• For very large backup operations requiring many tape volumes, managing
the physical marking of tape volumes can be difficult. In such a case, you
might consider purchasing and using a storage library system or archiving
software that automatically manages tape labeling for you.

Table 7–16 describes implicit and explicit Oracle RMU tape handling and
labeling.

Table 7–16 Implicit and Explicit Tape Labeling

If You Use . . . Then . . .

Explicit labeling You must specify the complete list of volume labels in the RMU Backup
command line.

In this instance, the Loader_Synchronization qualifier is required. One
disadvantage with using the Loader_Synchronization qualifier is that because
not all tape threads back up equal volumes of data, some operator support
is needed to load the tapes in stages as backup threads become inactive. If
a mistake is made in loading the tape volume, Oracle RMU will prompt the
operator for tape disposition, as described in Section 7.13.4.

Implicit labeling Oracle RMU labels the volumes by using the sequentially ordered labels such
as TAPE00, TAPE01, and so forth. The tape volumes can be loaded in any
order by the operator. Oracle RMU assigns labels to the tape volumes in the
order in which they are written.

When you use the Loader_Synchronization qualifier, you need to be careful
about physically marking your tapes as they come off the tape drives to ensure
that they are correctly labeled and to maintain the proper order for the restore
operation. For this reason, you should use the Journal qualifier to create a

7–70 Backing Up Your Database

journal file that records a description of the backup operation. (The Journal
qualifier is described in Section 7.13.2.4.)

Also, see Section 7.10 for information on how the Loader_Synchronization and
Parallel qualifiers interact.

7.13.2.4 Optimizing Tape Utilization Using a Journal File
To improve tape performance for RMU Restore and RMU Dump Backup_File
operations that must read multiple tapes, you can use the Journal qualifier
with the RMU Backup command. Having a journal file facilitates a restore
operation or dump backup operation when these are necessary.

When you specify the Journal qualifier, the RMU Backup command creates a
journal (.jnl) file that describes the backup operation including identification
of the tape volumes, their contents, and the order in which the labels were
written to each volume. You must write the journal file to disk; it cannot be
written to tape along with the backup file.

Oracle Corporation recommends you use the Journal qualifier. It is particularly
useful when you employ implicit labeling (allow Oracle RMU to generate tape
labels) in a multidrive, unattended backup operation, because the journal
records the order in which the labels are written.

7.13.3 Avoiding Underrun Errors Using Cyclic Redundancy Checks
An underrun error occurs if the data being written fails to arrive at the tape
drive when the drive is ready for it. The usual reason for HSC tape underrun
errors is CI overload (queuing delays) or CI error recovery. When an underrun
error occurs, the tape is spinning and the drive is writing. The tape cannot
stop instantaneously. Instead, it either stops as soon as it can or continues
writing nonsense (say zeros) until the write request is finished. The HSC
drives write zeros to fill out the block being written (to the requested length)
including writing the correct parity and check characters.

Not all tape drives or system configurations and loadings generate underrun
errors. In particular, tape drives with cache generally cannot generate
underrun errors. Underrun errors may indicate that the system is either
broken or seriously undersized and should be fixed or properly sized for the
task.

Backing Up Your Database 7–71

Automatic Error Correction
The RMU Backup, OpenVMS BACKUP, and Digital UNIX tar commands
operate on the basis that media errors are more common than underrun errors.
To recover from errors, these commands leave the incomplete record and
rewrite it in a different tape position. The incomplete record does not generate
a correct cyclic redundancy check (CRC), so if you specify the RMU Backup
command with the Crc qualifier, Oracle RMU detects the incomplete record
and uses the good duplicate record; thus, the original error is corrected. If the
duplicate records are also bad, you can reconstruct the record using XOR error
recovery. If you do not use XOR error recovery, you cannot restore the database
with the backup file on that tape if both the record and its duplicate records
are lost.

When Is the Crc Qualifier Required?
If you do not use the Crc qualifier, the incomplete record is read. The initial
portion of the incomplete record is correct and passes all the available tests,
so the record is used and the subsequent duplicate records are ignored. This
happens because the incomplete record is read by the tape drive as a complete
record of the correct length but the tail end of it is replaced by zeros. The
tape drive does not detect an error when the record is read because it wrote
the correct parity and check characters to the tape. Therefore, processing
the incomplete record can produce problems. The Crc qualifier is required if
underrun errors are possible.

Crc Qualifier Options
The Crc qualifier has several options that, when specified, append a 32-bit end-
to-end error detection code value to each block of the backup file. This provides
added data integrity for devices and system data paths with less reliable error
checking. The Crc qualifier options are shown in the following table:

Qualifier Description

Crc [=Autodin_II] Uses the AUTODIN-II polynomial.

The default for NRZ/PE (800/1600 bits/inch) tape drives. The computation uses the hardware
instruction if it is available and the software emulation of CRC on processors that do not
implement the hardware CRC instruction (for example, VAX 6000). It is the most reliable
end-to-end error detection provided (probability of a missed error is less than one in one billion).

7–72 Backing Up Your Database

Qualifier Description

Crc=Checksum Uses addition with an end-around carry.

The default for GCR (6250 bits/inch) tape drives and TA78, TA79 and TA81 tape drives. This is
the same computation used to check the checksum on the database pages on disk. These HSC
drives have adequate error detection capability, but CI contention may cause data underruns
and unrecoverable restore errors. This qualifier option has a modest end-to-end error detection
capability (probability of a missed error is less than one in one thousand); it is more than adequate
for detecting the data underrun errors, and it is at least six times faster than the hardware CRC
computation.

Nocrc Disables end-to-end error detection.

The default for TA90 (IBM 3480 class drives).

The overall effect of these defaults is to make tape reliability comparable to
disk reliability. Use the guidelines in the following table for qualifier usage:

If You Expect to Retain
Your Backup Tapes . . . Then . . .

Longer than 1 year The Nocrc qualifier default may not be adequate. In this case, use the
Crc=Checksum qualifier.

Longer than 3 years Always use the Crc=Autodin_II qualifier.

Never retain backup tapes longer than five years without copying the data to
fresh media. This ensures against tape deterioration with age.

7.13.4 Checking Tape Labels
This section describes the series of steps Oracle RMU performs to check labels
on backup tapes. RMU processes tape labels to ensure that incorrect tape
volumes are not used to back up Oracle Rdb databases.

Oracle RMU performs automatic tape label checking for the RMU Backup,
Backup After_Journal, Dump After_Journal, Dump Backup_File, Recover,
Restore, and Restore Only_Root commands.

Table 7–17 describes the actions Oracle RMU takes when processing tape
labels. The table is applicable to both OpenVMS and Digital UNIX systems
except where noted.

Backing Up Your Database 7–73

Table 7–17 Oracle RMU Procedure to Check Tape Labels

Step Oracle RMU Action

! This step applies to OpenVMS systems only. Oracle RMU checks that the first tape volume has been logically
mounted.1

On OpenVMS systems, use the DCL MOUNT/FOREIGN command to mount the tape you want to use. You
must mount the first tape volume; Oracle RMU mounts subsequent volumes automatically. If OpenVMS
encounters an error when mounting the tape, Oracle RMU takes one of the following actions:

• Report the problem and retry the operation.

• Abort the operation.

If a severe error occurs when you mount the first volume, Oracle RMU will not mount subsequent volumes.

Oracle RMU tape operations do not automatically allocate the tape drives used. In an environment where
many users compete for a few tape drives, it is possible for another user to seize a drive while Oracle RMU is
waiting for you to load the next tape volume. You can reserve tape drives for yourself as follows:

1. Enter the DCL ALLOCATE command for the drives you plan to use before you enter an Oracle RMU
command.

2. Issue a DCL DEALLOCATE command after the Oracle RMU command completes.

" Oracle RMU checks the tape characteristics.

For an RMU Backup, RMU Backup After_Journal, or RMU Dump Backup_File command, the tape must be
properly mounted and cannot be write protected. If these checks fail, Oracle RMU prompts you to mount the
correct volume without write protection and indicate when you are finished.

Checks the tape labels2 as described in the following table:

If . . . Then . . .

The volume label disagrees with
the label specified

Oracle RMU returns an informational message.

The tape is not the first volume,
or if you specified the Rewind
qualifier in the command

Oracle RMU checks the tape protection and the expiration date of the
tape and returns an informational message regarding the error. Oracle
RMU checks the user-id parameter specified with the Owner=user-id
qualifier of the RMU Backup or RMU Backup After_Journal command.

You can write over an expired tape and you can read a tape that has not
expired.

1Not applicable to parallel backup operations.
2The label specified is either the label you specify with the Label qualifier or, if you do not specify the Label qualifier,
the label Oracle RMU constructs by default from the backup file name.

(continued on next page)

7–74 Backing Up Your Database

Table 7–17 (Cont.) Oracle RMU Procedure to Check Tape Labels

Step Oracle RMU Action

$ If any one of the checks fails, Oracle RMU prompts you for the action to take on the tape volume. You must
select one of the following options:

Option Description

Quit Cancels the operation, and exits from Oracle RMU.

Override Ignores the failed checks and uses the tape anyway. This option is available only when the
tape is performing a read request using either the RMU Dump After_Journal, RMU Dump
Backup, RMU Recover, or RMU Restore command.

Retry Repeats the checks after dismounting and remounting the same tape. The Retry option is
useful if you left the drive off line, or if there was some other kind of correctable error.

Unload Dismounts and unloads the tape so you can load the correct tape on the drive.

Initialize Requests that the tape be rewound and relabeled. This option is available only when you use
the RMU Backup or RMU Backup After_Journal command.

When you specify the Initialize option, Oracle RMU determines whether or not the label
supplied matches the actual volume label for the tape. If the label does not match the actual
volume label for the tape, Oracle RMU returns the following message:

This tape was incorrectly labeled. Expected AAAA03 - found AAAA55
Specify tape disposition (QUIT,INITIALIZE,RETRY,UNLOAD)
RMU> Initialize

The error was returned because the Label qualifier AAAA03 was specified for a tape whose
actual label is AAAA55. When the Initialize option is specified, the volume label of the tape
is changed from AAAA55 to AAAA03.

Initialize As Allows you to request that the tape be rewound and relabeled. The Initialize As option can
be used with the RMU Backup command only. The Initialize and Initialize As options differ
as follows:

• The Initialize option allows you to relabel the tape with the volume label that was
originally expected.

• The Initialize As option allows you to specify any volume label for the tape.

As with the Initialize option, you must set the label appropriately. If the RMU Backup
command determines that the label name does not match the actual volume label for the
tape, Oracle RMU returns the WRNGLBLmessage shown in the preceding Initialize option
description.

% Remounts tapes and reverifies tape labels, as requested.

Changing one tape for another tape follows essentially the same procedure, with one difference. If the first
volume is not at the beginning-of-tape (BOT) mark, complete label checking is not available.

Backing Up Your Database 7–75

7.13.5 Monitoring Error Rates
You should monitor the error rates on the tape devices you use for backup
operations. Although Oracle RMU ignores most tape errors, all errors detected
by the hardware might not be reported to Oracle RMU and all errors cannot be
recovered reliably.

If you observe errors during a backup operation, you should take precautions
against possible effects on the backup file. For example, you can use the
RMU Restore or RMU Dump Backup commands to verify the backup file is
readable or you can perform another backup operation to a different device
with different tapes to create an alternative backup file. Large numbers of
errors indicate the need for maintenance on your tape drive, or poor media
quality. If you have bad media, you should take corrective action as soon as
possible.

The following list contains operating-system specific recommendations:

Digital UNIX

• On Digital UNIX systems, if you enter an RMU command interactively
and a tape request or problem arises, Oracle RMU notifies the person who
issued the command. After being notified of the problem, the user who
issued the command can either fix the problem (if the user has access to
the tape drive) or contact the tape operator for assistance. ♦

OpenVMS
VAX

OpenVMS
Alpha • On OpenVMS systems, if you enter an Oracle RMU command from an

OpenVMS batch job, Oracle RMU reports tape requests and problems to
the tape operator. This occurs because tape requests and problems often
require manual intervention, and if the RMU command was issued from a
batch job, the only person who might be available is the operator.

On OpenVMS systems, if you enter an Oracle RMU command interactively
and a tape request or problem arises, Oracle RMU notifies the person who
issued the command through the I/O channel assigned to the logical name
SYS$COMMAND.

You can use the DCL command REQUEST to notify the tape operator as
shown in the following example:

$ REQUEST/REPLY/TO=TAPES -
_$ "Please Write Enable tape ATOZBG on drive 255MUA6:"

♦

7–76 Backing Up Your Database

7.14 Displaying Database Backup Information
When you perform a full backup operation, the database root file is updated
with information such as the type of backup operation (full, incremental,
or by-area), what areas are backed up, the name of the database, when the
database backup operation occurred, the location of the database root file, the
process name and user identifier for the user who performed the operation, and
so forth.

Example 7–14 shows sample output from an RMU Dump Backup_File
command.

Example 7–14 Sample Oracle RMU Dump Backup_File Commands

$ RMU/DUMP/BACKUP_FILE/OPTIONS=(DATA,FULL)/PROCESS=RECORD=1 MFPERS.RBF
.
.
.

Oracle Rdb specific root record

DBKEY for Oracle Rdb bootstrap page is 8:440:0
Release retrieval locks when no longer needed
Do not wait on record lock conflicts
Latest full backup file is dated 5-NOV-1995 15:29:37.23
Latest full backup transaction sequence number is 76
Database has never been incrementally restored
Database has never been fully restored
Latest full verify occurred at 5-NOV-1995 14:07:27.72
Database has never been altered

.

.

.
Snapshot area for storage area RESUMES

.

.

.
HEADER_SIZE = 80 OS_ID = 1024 UTILITY_ID = 722
APPLICATION_TYPE = 1 SEQUENCE_NUMBER = 1 MAJ_VER = 1 MIN_VER = 1
VOL_NUMBER = 1 BLOCK_SIZE = 32256 CRC = A2C8B8E1 NOCRC = 00
CRC_ALTERNATE = 00 BACKUP_NAME = MFPERS.RBF AREA_ID = 1
HIGH_PNO = 152 LOW_PNO = 1 HDR_CHECKSUM = EEA8

REC_SIZE = 287 REC_TYPE = 1 BADDATA = 00 ROOT = 01 AREA_ID = 0
LAREA_ID = 0 PNO = 0

(continued on next page)

Backing Up Your Database 7–77

Example 7–14 (Cont.) Sample Oracle RMU Dump Backup_File Commands

Backup File Summary Record, 287. bytes
BACKUP_NAME = RMU/BACKUP USERNAME = ORION UIC = [999211,000001]
Root creation date = 4-NOV-1995 14:34:17.20
Backup date = 5-NOV-1995 15:29:37.23
Last Full Backup date = 17-NOV-1858 00:00:00.00 OS type = 1024
OS Version = V5.4 System ID register = 301989891
Utility = Oracle Rdb Management Utility V7.0 Major version = 70
Minor version = 0 BLOCK_SIZE = 32256 GROUP_SIZE = 0 ACTIVE_IO = 3
FULL_BACKUP = 1 ONLINE_BACKUP = 0 AREAS_EXCLUDED = 0
USED_PAGE_MODIFIED_MAP = 00 VOLUME_SET =
VOLUME_NUMBER = 1 LIVE_AREAS = 10 VOLUME_AREAS = 10

BACKUP FILE = MFPERS.RBF
COMMAND = RMU/BACKUP MF_PERSONNEL MFPERS.RBF
ROOT_FILE = DUA01:[TEST1]MF_PERSONNEL.RDB;1
DRIVE = _111DUA99

Volume area # 1 AREA DBID = 0 STARTING PNO = 0
Volume area # 2 AREA DBID = 0 STARTING PNO = 0
Volume area # 3 AREA DBID = 0 STARTING PNO = 0
Volume area # 4 AREA DBID = 0 STARTING PNO = 0
Volume area # 5 AREA DBID = 0 STARTING PNO = 0
Volume area # 6 AREA DBID = 0 STARTING PNO = 0
Volume area # 7 AREA DBID = 0 STARTING PNO = 0
Volume area # 8 AREA DBID = 0 STARTING PNO = 0
Volume area # 9 AREA DBID = 0 STARTING PNO = 0

The RMU Dump Backup_File command provides a number of qualifiers
and options to help you customize the level of detail in the output display.
Example 7–14 uses the Options=(Data,Full) to include a dump of the database
backup file header information and the contents of the backup file’s records
and blocks.

You can use the Oracle RMU Dump command to capture particular
information, such as the date of the last backup file. For example, you
can dump the date in the database root file and compare it with the date in the
backup file to confirm that this is your last backup file.

To display this information, use the RMU Dump Backup_File command in its
default mode with no qualifiers. Oracle RMU returns the following message
during the integrity check of the database backup file:

RMU-I-DMPTXT_163, No dump output selected. Performing read check.

7–78 Backing Up Your Database

If you want to display the contents of the database root file as recorded in
the backup file and also check the integrity of the backup file, specify the
Options=Root qualifier, as shown in Example 7–15.

Example 7–15 Checking the Backup File to See When It Was Created

$ RMU/DUMP/BACKUP_FILE /OPTIONS=ROOT 111MUA0:PERS_FULL.RBF
Database Parameters:

Root filename is "DUA01:[ORION]MF_PERSONNEL.RDB;1"
Created at 4-NOV-1995 14:34:17.20
Oracle Rdb structure level is 70.0

.

.

.
Database root file ACL

(IDENTIFIER=[RDB,WARD],ACCESS=READ+WRITE+CONTROL+RMU$ALTER+RMU$ANALYZE+
RMU$BACKUP+RMU$CONVERT+RMU$COPY+RMU$DUMP+RMU$LOAD+RMU$MOVE+RMU$OPEN+
RMU$RESTORE+RMU$SECURITY+RMU$SHOW+RMU$UNLOAD+RMU$VERIFY)

DBKEY for Oracle Rdb bootstrap page is 8:440:0
Release retrieval locks when no longer needed
Do not wait on record lock conflicts
Latest full backup file is dated 5-NOV-1995 15:29:37.23 <-----Notice
Latest full backup transaction sequence number is 76
Database has never been incrementally restored
Database has never been fully restored

Latest full verify occurred at 5-NOV-1995 14:07:27.72
Database has never been altered

.

.

.

Backing Up Your Database 7–79

8
Restoring Your Database

If you lose access to your database because of a hardware or software failure,
you can use the RMU Restore command to restore a complete copy of a
database backup (.rbf) file created by the RMU Backup command.

In some cases, the RMU Restore command also can restore a corrupt database.
However, restoring data after possible corruption requires that you take extra
precautions to make sure the backup file is not corrupt.

The RMU Restore command provides a wide variety of options for restoring
a database. This chapter provides an overview of the RMU restore operation
and describes many of the qualifiers that you can use with the RMU Restore
command. Refer to the Oracle RMU Reference Manual for the complete list of
RMU Restore command options.

Note

You cannot restore a database remotely across a DECnet network. This
is a DECnet restriction. The DECnet software does not support disk
ancillary control process (ACP) queue I/O (QIO) request system service
access over the network through the file access listener (FAL).

8.1 Preparing to Restore a Database
The following list describes some tasks you should perform as a part of the
database restore operation:

• Be sure that you have enough disk space to hold the new database. The
RMU Restore command aborts if there is not enough disk space, resulting
in a corrupt database. Should this happen at your site, you must create
enough free space on the disk and run the RMU Restore command again.

Restoring Your Database 8–1

• Make sure you have the last full backup file and the last incremental
backup file or files (if any). The backup dates and times are recorded in the
database root (.rdb) file header. The restore procedure is the same for all
backup files if they were created on line or off line.

• If after-image journaling is enabled, use the RMU Recover command
after restoring the database to roll your database forward to the most
recently completed database commit operation. RMU Restore does this
automatically, if possible.

OpenVMS
VAX

OpenVMS
Alpha • Ensure that sufficient Oracle RMU privileges are granted to the database

creator and other users, especially if you restore the database into a
directory that is owned by a resource identifier. Section 8.2 describes how
to check for and grant Oracle RMU privileges. ♦

Note

If you restore (rather than create) a database to its original location, do
not delete the original version of the database root file before restoring
the database. When restoring the database, use the New_Version
qualifier on the RMU Restore command. This keeps the same ACL for
the new root file that exists on the original root file. After the Oracle
RMU restore operation, you can delete the original root file.

8.2 Access Privileges for a Restored Database
OpenVMS
VAX

OpenVMS
Alpha

Database access is determined by the access control entry (ACE) privileges for
the OpenVMS directory into which you restore the database.

The following table describes the conditions that determine database access
after an Oracle RMU restore operation:

When . . . Then . . .

You create, restore, or
copy a database into
your own directory

You are the owner of both the directory and the database. Therefore,
you automatically are granted all Oracle RMU privileges to access that
database.

You create, restore, or
copy a database into a
directory owned by a
resource identifier

The resource identifier is the owner of the database. The default
OpenVMS privileges for the directory (those of the resource identifier)
take precedence over the Oracle RMU privileges. Thus, even though
you created or restored the database, you cannot access the database.

8–2 Restoring Your Database

When you restore a database, ACE privileges for the database root file are
added to the OpenVMS access control list (ACL). The default OpenVMS ACE
privileges always appear in the ACL before the Oracle RMU ACEs (if any).
When you enter an RMU command that requires access to the database,
OpenVMS searches entries in the ACL in the following order:

1. The OpenVMS directory ACE

The OpenVMS ACL controls users’ access to files and directories on the
system. At the OpenVMS level, you can grant READ, WRITE, EXECUTE,
DELETE, CONTROL, or NONE (no privileges) on a file or directory.

2. The Oracle RMU ACE

In addition to the OpenVMS ACL, Oracle RMU provides another level of
security that controls the RMU functions that a user can perform. Oracle
RMU manages this additional level of security by recording Oracle RMU
ACE privileges in the OpenVMS ACL.

The OpenVMS process searches each entry in the ACL looking for an ACE
that matches your user identification code (UIC) or the resource identifier
(whichever appears first). If the ACL for a directory does not include Oracle
RMU privileges, you cannot perform any Oracle RMU functions on the
database.

For example, the following DCL command displays OpenVMS and Oracle RMU
privileges for the TEST_DATA database:

$ SET DEF RDBVMS_USER1:[ORAUSER.MYDATABASE]
$ DIRECTORY /SECURITY
TEST_DATA.RDB;1 14-FEB-1996 14:07:40.81 [RDB,ORAUSER] (RWED,RW,,)

(IDENTIFIER=[RDB,ORAUSER], !ACCESS=READ+WRITE+CONTROL+"BIT_5+BIT_6+
BIT_7+BIT_8+BIT_9+BIT_10+BIT_11+BIT_12+BIT_13+BIT_14+BIT_15+BIT_16+
BIT_17+BIT_18)

TEST_DATA.SNP;1 14-FEB-1996 14:07:42.14 [RDB,ORAUSER] (RWED,RW,,)

! OpenVMS access privileges

" Oracle RMU privileges (BIT_5 through BIT_18)

Because the OpenVMS operating system is unable to translate Oracle RMU
access privileges, the DCL command displays them in a BIT_n format.

You can use the RMU Show Privileges command to translate the BIT_n names,
as shown in the following example:

Restoring Your Database 8–3

$ SET DEF RDBVMS_USER1:[ORAUSER.MYDATABASE]
$ RMU/SHOW PRIVILEGE TEST_DATA.RDB
Object type: file, Object name:RDBVMS_USER1:[ORAUSER.MYDATABASE]TEST_DATA.RDB;1,
on 14-FEB-1996 14:11:19.96

(IDENTIFIER=[RDB,ORAUSER], !ACCESS=READ+WRITE+CONTROL+"RMU$ALTER+
RMU$ANALYZE+RMU$BACKUP+RMU$CONVERT+RMU$COPY+RMU$DUMP+RMU$LOAD+
RMU$MOVE+RMU$OPEN+RMU$RESTORE+RMU$SECURITY+RMU$SHOW+RMU$UNLOAD+
RMU$VERIFY)

! OpenVMS access privileges

" Oracle RMU privileges

The Oracle RMU Show Privilege command displays the Oracle RMU access
privileges as RMU$Function, where Function is alter, analyze, and so forth.
In the example, all of the Oracle RMU privileges are listed. Thus, the
database user ORAUSER can perform all Oracle RMU operations on the
database.

Note

Access to an Oracle Rdb database is controlled by ACLs that are
stored in the database. Because Oracle Rdb is privileged, it can always
open the database to check these privileges regardless of OpenVMS
privileges.

If you create, copy, or restore a database to a directory owned by a resource
identifier, the ACE for the database inherits the default ACE defined for the
directory. For example:

$ SET FILE/ACL=(ID=DATABASE_1,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL) -
_$ DB_DIRECTORY.DIR
$ SET FILE/ACL=(ID=DATABASE_1, OPTIONS=DEFAULT, -
_$ ACCESS+READ+WRITE+EXECUTE+DELETE+CONTROL) DB_DIRECTORY.DIR
$ SET FILE DB_DIRECTORY.DIR/OWNER=DATABASE_1
$ DIRECTORY/SECURITY DB_DIRECTORY.DIR

Directory RDBVMS_USER1:[ORAUSER]

DB_DIRECTORY.DIR;1 14-FEB-1996 16:55:08.86 DATABASE_1 (RWE,RWE,RE,E)
(IDENTIFIER=DATABASE_1,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE+

DELETE+CONTROL)
(IDENTIFIER=DATABASE_1,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)

. . .
$ RMU /RESTORE TEST_DATABASE.RBF
$ DIRECTORY/SECURITY

Directory RDBVMS_USER1:[ORAUSER.DB_DIRECTORY]

8–4 Restoring Your Database

TEST_DATABASE.RDB;1 14-FEB-1996 16:57:18.20 DATABASE_1 (RWED,RW,,)
(IDENTIFIER=[RDB,ART],OPTIONS=NOPROPAGATE,ACCESS=READ+WRITE+
CONTROL)
(IDENTIFIER=DATABASE_1,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)

Total of 1 file.

TEST_DATABASE.SNP;1 14-FEB-1996 16:57:19.16 DATABASE_1 (RWED,RW,,)
(IDENTIFIER=[RDB,ART],OPTIONS=NOPROPAGATE,ACCESS=READ+WRITE+
CONTROL)
(IDENTIFIER=DATABASE_1,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)

The example ACE for the user ORAUSER shows that the default OpenVMS
privileges are applied when you create a file in a directory owned by a resource
identifier. That is, the file system supplies an ACE that grants the user
CONTROL access plus the access specified in the Owner field of the UIC-based
protection. Thus, user [RDB,ORAUSER] inherits READ+WRITE from the
database UIC of (RWED,RW,,), plus the CONTROL privilege that the file
system grants by default.

OpenVMS has removed the RMU entries from the ACL. Therefore, any
attempts to perform RMU operations to the restored database are denied. You
can resolve the situation using either of the following methods:

• From an OpenVMS account with BYPASS privileges, use the RMU Set
Privilege command to grant the necessary Oracle RMU privileges to each
user of the database.

• Use the DCL command SET FILE/ACL to set up the database root file
ACE in the directory’s default ACL, and set up the Oracle RMU access
privileges. Using the SET FILE/ACL command applies the same ACL to
all files including non-database files. Thus, ACLs for non-database files
inherit the Oracle RMU privileges you set up in the directory’s default
ACL for the database root file. (In this case, you cannot use the RMU
Set Privilege command; it fails because you do not have the Oracle RMU
privileges to change RMU security.)

♦

8.3 Full Database Restore Operations
Use your full database backup file to restore your database to the state it was
in when the last full backup was made. If you are unsure which database
backup file (.rbf) file is the most current, use the RMU Dump Backup_File
Options=Root command to display the date of the last full backup operation
(see Section 7.7).

Restoring Your Database 8–5

The full backup file should have the same timestamp as the one shown in
the database root (.rdb) file header. When you find the correct database .rbf
file, use the RMU Restore command to restore your database. For example,
to restore from the DBS_BACKUPS disk, issue the command shown in
Example 8–1.

Example 8–1 Starting a Full Restore Operation from the DBS_BACKUPS Disk

$ RMU/RESTORE/LOG DBS_BACKUPS:[MFPERS]MF_PERS_FULL.RBF

%RMU-I-RESTXT_04, Thread 1 file uses devices DBM$DISK:
%RMU-I-AIJRSTBEG, restoring after-image journal "state" information
%RMU-I-AIJRSTJRN, restoring journal "JOURN_1" information
%RMU-I-AIJRSTSEQ, journal sequence number is "0"
%RMU-I-AIJRSTSUC, journal "JOURN_1" successfully restored from file
"DISK11$:[JOURNAL]JOURN_1.AIJ;1"
%RMU-I-AIJRSTJRN, restoring journal "JOURN_2" information
%RMU-I-AIJRSTSEQ, journal sequence number is "1"
%RMU-I-AIJRSTSUC, journal "JOURN_2" successfully restored from file
"DISK12$:[JOURNAL]JOURN_2.AIJ;1"
%RMU-I-AIJRSTJRN, restoring journal "JOURN_3" information
%RMU-I-AIJRSTSEQ, journal sequence number is "2"
%RMU-I-AIJRSTSUC, journal "JOURN_3" successfully restored from file
"DISK13$:[JOURNAL]JOURN_3.AIJ;1"
%RMU-I-AIJRSTEND, after-image journal "state" restoration complete
%RMU-I-RESTXT_00, restored root file DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
%RMU-I-LOGRESSST, restored storage area DISK1:[MFPERS]MF_PERS_DEFAULT.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK3:[MFPERS]EMPIDS_LOW.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK5:[MFPERS]EMPIDS_MID.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK6:[MFPERS]EMPIDS_OVER.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK3:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK5:[MFPERS]SALARY_HISTORY.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK3:[MFPERS]JOBS.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK4:[MFPERS]EMP_INFO.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK2:[MFPERS]RESUME_LISTS.RDA;2
%RMU-I-LOGRESSST, restored storage area DISK6:[MFPERS]RESUMES.RDA;2
%RMU-I-LOGRESSST, restored storage area DISK3:[MFPERS]EMPIDS_LOW.RDA;2
%RMU-I-RESTXT_05, rebuilt 1 space management page
%RMU-I-RESTXT_06, restored 0 inventory pages
%RMU-I-RESTXT_07, rebuilt 0 logical area bitmap pages
%RMU-I-RESTXT_08, restored 51 data pages
%RMU-I-LOGRESSST, restored storage area DISK5:[MFPERS]EMPIDS_MID.RDA;2
%RMU-I-RESTXT_05, rebuilt 1 space management page
%RMU-I-RESTXT_06, restored 0 inventory pages
%RMU-I-RESTXT_07, rebuilt 0 logical area bitmap pages
%RMU-I-RESTXT_08, restored 51 data pages

(continued on next page)

8–6 Restoring Your Database

Example 8–1 (Cont.) Starting a Full Restore Operation from the DBS_BACKUPS Disk

.

.

.
%RMU-I-LOGRESSST, restored storage area DISK1:[MFPERS]MF_PERS_DEFAULT.RDA;2
%RMU-I-RESTXT_05, rebuilt 1 space management page
%RMU-I-RESTXT_06, restored 6 inventory pages
%RMU-I-RESTXT_07, rebuilt 135 logical area bitmap pages
%RMU-I-RESTXT_08, restored 576 data pages
%RMU-I-RESTXT_01, Initialized snapshot file DISK1:[MFPERS]MF_PERS_DEFAULT.SNP;2
%RMU-I-LOGINIFIL, contains 248 pages, each page is 2 blocks long
%RMU-I-RESTXT_01, Initialized snapshot file DISK4:[MFPERS]EMPIDS_LOW.SNP;2
%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long

.

.

.
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJRECBEG, recovering after-image journal "state" information
%RMU-I-AIJRSTAVL, 3 after-image journals available for use
%RMU-I-AIJRSTMOD, 3 after-image journals marked as "modified"
%RMU-F-AIJENBOVR, enabling AIJ journaling would overwrite an existing journal
%RMU-I-AIJISOFF, after-image journaling has been disabled
%RMU-I-AIJRECEND, after-image journal "state" recovery complete
%RMU-I-LOGRECDB, recovering database file DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file DISK11$:[JOURNAL]JOURN_1.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 1 transaction ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 1
%RMU-I-LOGOPNAIJ, opened journal file DISK12$:[JOURNAL]JOURN_2.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 2
%RMU-I-LOGOPNAIJ, opened journal file DISK13$:[JOURNAL]JOURN_3.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 2 roll-forward operations completed
%RMU-I-LOGRECOVR, 0 transactions committed

(continued on next page)

Restoring Your Database 8–7

Example 8–1 (Cont.) Starting a Full Restore Operation from the DBS_BACKUPS Disk
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 3
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 4 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 1 transaction ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 3
%RMU-I-AIJNOENABLED, after-image journaling has not yet been enabled
%RMU-I-LOGINTEGRATE, Integrating DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1 into CDD path

MF_PERSONNEL
$

A restore operation automatically applies the journal files if they are available,
modified, and on disk. If you restore a database for which journals exist but
are unavailable because they are backed up, or they are located on a disk that
is off line, Oracle RMU returns the following warning message indicating that
you must recover the journals manually:

%RMU-W-USERECCOM, Use the RMU Recover command. The journals are not available.

If you want to inhibit automatic recovery because you want to restore
incrementally, you must explicitly prevent recovery by specifying:

• The Norecovery qualifier on the RMU Restore command line

• A new journal state with one of the journal options

In Example 8–1, no previous version of the database exists. If a previous
version exists and you omit the New_Version qualifier, Oracle RMU returns
the error message shown in Example 8–2.

8–8 Restoring Your Database

Example 8–2 Omitting the New_Version Qualifier in a Restore Operation When a Previous
Version of the Database Exists

$ RMU/RESTORE/LOG DBS_BACKUPS:[MFPERS]MF_PERS_FULL.RBF

%RMU-I-RESTXT_04, Thread 1 file uses devices DBM$DISK:
%RMU-F-FILACCERR, error creating database file DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
-RMS-E-FEX, file already exists, not superseded

Use the New_Version qualifier to create a new version of the database as
shown in Example 8–3.

Example 8–3 Using the New_Version Qualifier During a Restore Operation to Supersede a
Previous Version of the Database

$ RMU/RESTORE /NEW_VERSION /LOG DBS_BACKUPS:[MFPERS]MF_PERS_FULL.RBF

%RMU-I-RESTXT_04, Thread 1 file uses devices DBM$DISK:
.
.
.

When the restore operation proceeds using the New_Version qualifier, new
version numbers for the .rdb, .rda, and .snp files are created. You must specify
the new version number of the .rdb file if you want to apply an incremental
restore operation, or roll the database forward from the .aij file, or both.
Otherwise, if you perform an RMU Verify Root command, Oracle RMU returns
an error message indicating that the .aij file contains references to the older
database file. See Example 9–7 and Example 9–15 for examples of rollforward
operations that use the RMU Recover command. If any old versions of your
database exist when you are finished with the full incremental restore and
rollforward operations, delete them as shown in Example 8–4.

Example 8–4 Deleting an Old Database Version After Fully Restoring and
Recovering the Database

$ SQL
SQL> DROP DATABASE FILENAME DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1;

Restoring Your Database 8–9

8.4 Incremental Restore Operations
After you restore your database from a full .rbf file, you can also restore your
database from an incremental .rbf file, if one exists. If you intend to restore an
incremental backup file, you should use the Norecovery qualifier on all but the
last restore operation to be performed. The Norecovery qualifier inhibits the
automatic recovery from journal files.

Always use the last incremental .rbf file taken since the last full backup
operation; make sure the timestamp of the incremental .rbf file is later than
the timestamp of the last full backup file. Use the RMU Dump Backup_File
Options=Root command to determine from the .rdb file if the database was
ever incrementally restored, as shown in Example 8–5.

Example 8–5 Displaying the Root File Header to Check If the Database Was
Ever Incrementally Restored

$ RMU/DUMP/BACKUP_FILE /OPTIONS=ROOT -
_$ DBS_BACKUPS:[MFPERS]MF_PERS_FULL.RBF

Database parameters
.
.
.

Latest full backup file is dated 20-OCT-1993 14:03:06.47
Database has never been incrementally restored

This mf_personnel database has never been incrementally restored. Use the
RMU Restore Incremental command to restore your database incrementally as
shown in Example 8–6.

Example 8–6 Starting an Incremental Restore Operation Following a Full Restore Operation

$ RMU/RESTORE/NOLOG/NEW_VERSION/NORECOVERY -
_$ DBS_BACKUPS:[MFPERS]MF_PERS_FULL.RBF
$ RMU/RESTORE/INCREMENTAL/ROOT=DB_DISK:[MFPERS]MF_PERSONNEL.RDB;3
Backup: DBS_BACKUPS:[MFPERS]MF_PERS_INCR.RBF /LOG

%RMU-I-RESTXT_04, Thread 1 file uses devices DBM$DISK:
DB_DISK:[MFPERS]MF_PERSONNEL.RDB;3, restore incrementally? [N]:Y

(continued on next page)

8–10 Restoring Your Database

Example 8–6 (Cont.) Starting an Incremental Restore Operation Following a Full Restore
Operation

%RMU-I-RESTXT_04, Thread 1 file uses devices DBM$DISK:
.
.
.

%RMU-I-LOGINTEGRATE, Integrating DB_DISK:[MFPERS]MF_PERSONNEL.RDB;3 into path
MF_PERSONNEL

Note

Automatic .aij file recovery will be attempted when you restore a
database from a full, incremental, by-area, or by-page backup file. Use
the Norecovery qualifier to disable this feature. For example, if you
intend to restore a database as in this case by first issuing a full RMU
Restore command followed by the application of one or more RMU
Restore Incremental or RMU Restore Area commands, you must specify
the Norecovery command on all but the last RMU Restore command
in the series you intend to issue. Allowing Oracle RMU to attempt
automatic recovery with a full restore operation when you intend to
apply additional incremental, by-area, or by-page backup files may
result in a corrupt database.

The Root qualifier in Example 8–6 specifies the correct version of the
database to restore incrementally (version 3 of the .rdb file). Use the
RMU Dump Backup_File Options=Root command to verify the effect of
the incremental restore operation as shown in Example 8–7.

Example 8–7 Displaying the Root File Header to Check if the Database Was
Restored Incrementally

$ RMU/DUMP/BACKUP_FILE /OPTIONS=ROOT MF_PERS_INCR.RBF
.
.
.

Latest full backup file is dated 20-OCT-1993 14:03:06.47
Latest full backup transaction sequence number is 1
Latest incremental restore file used is dated 1-NOV-1993 13:03:31:78

Restoring Your Database 8–11

The .rdb file header now shows the timestamp of the incremental restore file.
You cannot now use the same incremental .rbf file again for this database. If
you try to restore your database incrementally by using the same incremental
.rbf file a second time, you receive the message shown in Example 8–8.

Example 8–8 Error If You Try to Incrementally Restore the Same Database a Second Time,
Using the Same Incremental .rbf File

$ RMU/RESTORE/INCREMENTAL/ROOT=DB_DISK:[MFPERS]MF_PERSONNEL.RDB;3/LOG
Backup: DBS_BACKUPS:[MFPERS]MF_PERS_INCR.RBF

%RMU-I-RESTXT_04, Thread 1 file uses devices DB_DISK:
DB_DISK:[MFPERS]MF_PERSONNEL.RDB;3, restore incrementally? [N]:Y
%RMU-F-INCAPPLIED, incremental restore to 1-NOV-1993 13:03:31:78 has already been done

When restoring a database to the same device and directory as an existing copy
of the same database, you must use the New_Version qualifier in the RMU
Restore command and the Root qualifier in the RMU Restore Incremental
command. Otherwise, you may apply your incremental .rbf file against the
wrong version of the database.

The confirmation prompt of the RMU Restore Incremental command asks you
to make sure you are applying your incremental .rbf file to the right version of
the right database. If you are not certain, press the Return key to accept the
default response of N (no) and cancel the incremental restore operation.

Caution

Make sure no one else accesses your database between issuing an RMU
Restore command and issuing an RMU Restore Incremental command.
That is, close the database so that it is inaccessible. Updates made
between a full and an incremental restore operation can be lost if the
incremental restore operation writes over the database page on which
such an update is made.

8–12 Restoring Your Database

8.5 A Sample Restore Procedure
This section describes a sample restore procedure as part of a possible strategy
for restoring databases from regularly created and maintained database
backup files.

Assume you lose access to your database because the disk on which the
database resides has a read/write head failure and the .rdb file is damaged.
After the disk is repaired, you want to restore your database to its original
location and delete the damaged database.

Assume the disk head failure occurs on a Wednesday. First, you must restore
the full .rbf file made the previous Friday and the incremental database .rbf
file made Tuesday night, the day before the disk failure. After you mount the
appropriate tape volumes, you can issue the commands shown in Example 8–9
to restore your database from tape and delete the damaged version. If the .rdb
file is damaged, you must use the operating system command to delete the
file.

Example 8–9 Sample Restore Procedure Followed by Deleting an Old
Version of the Database

$ RMU/RESTORE /NORECOVERY 111MUA0:PERS_FULL.RBF
$ RMU/RESTORE/INCREMENTAL/ROOT=DB_DISK:[MFPERS]MF_PERSONNEL.RDB;
Backup: DBS_BACKUPS:PERS_INCR.RBF /LOG

%RMU-I-RESTXT_04, Thread 1 file uses devices DBM$DISK:
DB_DISK:MF_PERSONNEL.RDB;3, restore incrementally? [N]:Y
$
$ DELETE DB_DISK:[MFPERS]MF_PERSONNEL.RDB;2

Watch the database version numbers carefully to make sure you restore
your incremental backup file against the right database. In this example, a
semicolon (;) at the end of the .rdb file name indicates the incremental restore
procedure is to be applied to the highest version of the .rdb file. This is only
a problem if you use the same directory for two copies of the database. If the
original database is still present, the restore operation will not retain .aij files
and automatic recovery will not be performed after the incremental restore
operation.

The last step following a full and incremental restore operation is to roll the
database forward by using the RMU Recover command. This brings your
database up-to-date with the contents of the .aij file. See Chapter 9 for an
example and the steps to follow to recover or roll a database forward.

Restoring Your Database 8–13

8.6 Performing By-Area Restore Operations
The RMU Restore command permits you to restore one or more storage areas
on line (using the Online qualifier) without restoring the entire database.
Being able to restore one or more storage areas on line simplifies the physical
restructuring of a large database. However, it is strongly recommended that
you enable after-image file journaling to back up and restore databases by
storage area and to roll the database forward to the most recently completed
transaction in the event of a problem. Users can be attached to the database
but are excluded from accessing the area being restored because the online
by-area restore operation takes out an exclusive lock on the area being
restored.

See the note in Section 8.4 about using the Norecovery qualifier if more than
one area is to be restored in successive Oracle RMU commands so you can
disable recovery on all but the last RMU Restore command.

Using the Area and Online qualifiers, you can create a storage area selection
list of only the storage areas you want restored on line. By default, Area is
not specified, and all storage areas in the backup file are restored off line.
For example, suppose you wanted to restore the EMP_INFO storage area on
line and automatically roll forward on line the contents of the .aij file for this
storage area up to the current date. Example 8–10 shows this scenario.

8–14 Restoring Your Database

Example 8–10 Restoring and Recovering the EMP_INFO Storage Area

$! Restore on line only the EMP_INFO storage area.
$
RMU/RESTORE/NOCDD_INTEGRATE/AREA/LOG/ONLINE MFPERS.RBF EMP_INFO
%RMU-I-RESTXT_04, Thread 1 uses devices DUA1:
%RMU-I-LOGRESSST, restored storage area DUA1:[ORION]EMP_INFO.RDA;1
%RMU-I-LOGRESSST, restored storage area DUA1:[ORION]EMP_INFO.RDA;1
%RMU-I-RESTXT_05, rebuilt 1 space management page
%RMU-I-RESTXT_06, restored 0 inventory pages
%RMU-I-RESTXT_07, rebuilt 0 logical area bitmap pages
%RMU-I-RESTXT_08, restored 30 data pages
%RMU-I-RESTXT_01, Initialized snapshot file DUA2:[ORION]EMP_INFO.SNP;1
%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJRECARE, Recovery of area EMP_INFO starts with AIJ file sequence 0
%RMU-I-AIJBADAREA, inconsistent storage area DUA1:[ORION]EMP_INFO.RDA;1
needs AIJ sequence number 0
%RMU-I-LOGRECDB, recovering database file DUA3:[ORION]MF_PERSONNEL.RDB;1
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file DUA11:[ORION]MFPERS.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 2 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 1
%RMU-I-LOGOPNAIJ, opened journal file DUA12:[ORION]MFPERS1.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 2
%RMU-I-LOGOPNAIJ, opened journal file DUA13:[ORION]MFPERS2.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 2 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed

(continued on next page)

Restoring Your Database 8–15

Example 8–10 (Cont.) Restoring and Recovering the EMP_INFO Storage Area
%RMU-I-LOGSUMMARY, total 6 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 2 transactions ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJGOODAREA, storage area DUA1:[ORION]EMP_INFO.RDA;1 is now consistent
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 2
$
$! Verify your database to be sure it is intact, including
$! the restored and recovered SALARY_HISTORY storage area.
$
$ RMU/VERIFY DB_DISK:[MFPERS]MF_PERSONNEL

For more examples and discussion of automatic and manual recovery, see
Section 9.9 and Section 9.12.

A request to restore a storage area not included in the backup file results in an
error, as shown in Example 8–11. The resulting database, typically the affected
storage area, is unusable until the affected storage area is properly restored.

Example 8–11 Error If You Try to Restore a Storage Area That Is Not
Included in the Backup File

$ RMU/BACKUP /EXCLUDE=DEPARTMENTS MF_PERSONNEL PERS_BACKUP.RBF
$ RMU/RESTORE /NEW_VERSION /AREA PERS_BACKUP.RBF DEPARTMENTS
%RMU-W-AREAEXCL, The backup does not contain the storage area - DEPARTMENTS

When this restore operation is attempted on a usable database, it does
complete, but the DEPARTMENTS storage area may be inconsistent if the
Norecovery qualifier is specified or the backup operation was so old that
automatic recovery is not performed. In Example 8–12, an RMU Verify
command shows the error that results when you try to verify the database.

8–16 Restoring Your Database

Example 8–12 Error If You Try to Verify the Database

$ RMU/VERIFY MF_PERSONNEL
%RMU-W-BADPROID, STORAGE AREA file DEPARTMENTS.RDA;5 a bad identifier
Expected "RDMSDATA", found
%RMU-W-BADDBPRO, This STORAGE AREA file does not belong to
MF_PERSONNEL;4 database

found references to database.
%RMU-W-INVALFILE, inconsistent database file DEPARTMENTS.RDA;5
%RMU-F-INVDBSFIL, inconsistent storage area file DEPARTMENTS.RDA;5

To correct this situation, find the backup file containing the last full backup file
of the DEPARTMENTS storage area, and restore the DEPARTMENTS storage
area as shown in Example 8–13.

Example 8–13 Restoring an Inconsistent Storage Area from a Backup File
Containing That Storage Area

$ RMU/RESTORE /NEW_VERSION /AREA /ONLINE PERS_BACKUPALL.RBF DEPARTMENTS

Now verify that the DEPARTMENTS storage area is consistent and check
the version number of the DEPARTMENTS storage area file, noting that it is
incremented by 1 as shown in Example 8–14.

Example 8–14 Verifying the Database and Checking the Version Number of
the Storage Area File

$ RMU/VERIFY MF_PERSONNEL
$
$!No error message means the database has been successfully verified.
$
$ DIR DEPARTMENTS.RDA

Directory DUA1:[ORION]

DEPARTMENTS.RDA;6 DEPARTMENTS.RDA;5 DEPARTMENTS.RDA;4

Total of 3 files.

Because a backup file may be a partial one of the database, without all
storage areas present, you must ensure that all storage areas of a database
are restored and recovered when using the RMU Backup and RMU Restore
commands to duplicate a database. Oracle Rdb recommends that you make
full database backup files containing all storage areas on a regular basis and
use this backup file for duplicating the database.

Restoring Your Database 8–17

In addition, if your database is very large, you can devise a partial database
backup strategy for different storage areas. In this case, you can restore a
database by specific storage areas based on your partial backup strategy.
Always use your last full backup file containing all storage areas for
duplicating the database. If you use your partial backup strategy to duplicate
the database, you must realize that all storage areas must be restored properly
for the database to be usable again. Using a complete backup file containing
all storage areas to duplicate your database is easier and makes good sense.
Therefore, use the RMU Restore command with the Area and Online qualifiers
only when you want to restore one or a few storage areas.

8.6.1 Performing an Online By-Area Restore Operation on One Storage Area
Assume that the read/write SALARY_HISTORY storage area in the mf_
personnel database was last backed up on a Friday. To restore on line only
this storage area, use the RMU Restore command shown in Example 8–15,
using the last full and complete backup file (pers_full_rw.rbf) that contains
all the mf_personnel database read/write storage areas. Users can access
other database storage areas while this operation is being performed, but they
cannot access the storage area being restored during this restore operation.

Example 8–15 Online By-Area Restore Operation of a Read/Write Storage
Area

$ RMU/RESTORE/NEW_VERSION /AREA /ONLINE -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL_RW.RBF SALARY_HISTORY

8.7 Performing By-Page Restore Operations
The RMU Restore command permits you to restore one or more database pages
on line without restoring the entire database. Users are locked from using
those pages that are being restored and recovered. If after-image journaling is
enabled, restored pages must be recovered to make the pages consistent. The
following scenario shows how to restore and recover a corrupt page and display
the corrupt page table (CPT) to monitor the progress.

Suppose you perform a full verify operation and receive the following error
message:

$ RMU/VERIFY/ALL MF_PERSONNEL
%RMU-W-PAGCKSBAD, area DEPARTMENTS, page 4

contains an invalid checksum
expected: 7949BB61, found: 7949AE61

%RMU-E-CORRUPTPG, Page 4 in area DEPARTMENTS is marked as corrupt.
$

8–18 Restoring Your Database

This error indicates that page 4 in the DEPARTMENTS table is corrupt. This
information is automatically logged in the CPT. Display the CPT to note the
entry, as follows:

$ RMU/SHOW CORRUPT_PAGES MF_PERSONNEL
.
.
.

Entries for storage area DEPARTMENTS

Page 4
- AIJ recovery sequence number is -1
- Area ID number is 5
- Consistency transaction sequence number is 0
- State of page is: corrupt

.

.

.

To make the page accessible to users again, restore page 4 from a full and
complete backup operation of the database by using the Just_Corrupt qualifier.
If after-image journaling is enabled, make sure all journals are available and
on disk; if journals are backed up, you will have to recover them manually;
otherwise, journals are applied automatically as part of the restore operation.

$ RMU/RESTORE/LOG/AREA MFPERS_FULL.RBF DEPARTMENTS/JUST_CORRUPT
%RMU-I-RESTXT_04, Thread 1 uses devices DISK3$:
%RMU-I-LOGRESSST, restored storage area DISK3$:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK3$:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-RESTXT_05, rebuilt 0 space management pages
%RMU-I-RESTXT_06, restored 0 inventory pages
%RMU-I-RESTXT_07, rebuilt 0 logical area bitmap pages
%RMU-I-RESTXT_08, restored 1 data page
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJBADPAGE, inconsistent page 4 from storage area
DISK3$:[MFPERS]DEPARTMENTS.RDA;1 needs AIJ sequence number 0
%RMU-I-LOGRECDB, recovering database file DB_DISK:MF_PERSONNEL.RDB;1
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file DISK11$:[JOURNAL]JOURN_1.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 1 transaction ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 1
%RMU-I-LOGOPNAIJ, opened journal file DISK12$:[JOURNAL]JOURN_2.AIJ;1

Restoring Your Database 8–19

%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 4 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 1 transaction ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJGOODPAGE, page 4 from storage area DISK3$:[MFPERS]DEPARTMENTS.RDA;1
is now consistent
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 3
%RMU-I-AIJNOENABLED, after-image journaling has not yet been enabled

Because the journals are on disk and available, the restore operation also
proceeded to automatically recover the database page to make it consistent and
update the CPT to indicate the CPT is now empty and all areas are consistent.

However, suppose for some reason the journals were not available when
you restored the database (journals were backed up) or you specified the
Norecovery qualifier in the restore operation. Under these circumstances you
must recover the database manually. In this situation, you should follow the
restore and recovery progress by displaying the status of the page by inspecting
the CPT.

$ RMU/RESTORE/LOG/AREA/NORECOVERY MFPERS_FULL DEPARTMENTS/JUST_CORRUPT
%RMU-I-RESTXT_04, Thread 1 uses devices DISK3$:
%RMU-I-LOGRESSST, restored storage area DISK3$:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-LOGRESSST, restored storage area DISK3$:[MFPERS]DEPARTMENTS.RDA;1
%RMU-I-RESTXT_05, rebuilt 0 space management pages
%RMU-I-RESTXT_06, restored 0 inventory pages
%RMU-I-RESTXT_07, rebuilt 0 logical area bitmap pages
%RMU-I-RESTXT_08, restored 1 data page
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0

Recovery starts with .aij file sequence number 0. Display the CPT to determine
the current status of page 4 as follows:

$ RMU/SHOW CORRUPT_PAGES MF_PERSONNEL
.
.
.

Entries for storage area DEPARTMENTS

8–20 Restoring Your Database

Page 4
- AIJ recovery sequence number is 0
- Area ID number is 5
- Consistency transaction sequence number is 88
- State of page is: inconsistent

.

.

.

The CPT indicates that the status of page 4 is changed from corrupt to
inconsistent and that AIJ recovery should begin with AIJ sequence number
0 and the consistency transaction sequence number (TSN) is 88. Manually
recover the journal files. If the remaining journal files are available and on
disk, recovery proceeds automatically after the first journal file is applied.

$ RMU/RECOVER/JUST_CORRUPT/ONLINE/LOG JOURN_1
%RMU-I-AIJBADPAGE, inconsistent page 4 from storage area
DISK3$:[MFPERS]DEPARTMENTS.RDA;1 needs AIJ sequence number 0
%RMU-I-LOGRECDB, recovering database file DB_DISK:MF_PERSONNEL.RDB;1
%RMU-I-LOGOPNAIJ, opened journal file DISK11$:[JOURNAL]JOURN_1.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 1 transaction ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 1
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file DISK12$:[JOURNAL]JOURN_2.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 4 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 1 transaction ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJGOODPAGE, page 4 from storage area
DISK3$:[MFPERS]DEPARTMENTS.RDA;1 is now consistent
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 3
%RMU-I-AIJNOENABLED, after-image journaling has not yet been enabled

Restoring Your Database 8–21

A display of the CPT indicates that all storage areas are now consistent, as
follows:

$ RMU/SHOW CORRUPT_PAGES MF_PERSONNEL
.
.
.

Corrupt page table is empty.
.
.
.

All storage areas are consistent.
.
.
.

If you must manually apply each backed up journal file, both the informational
messages from each recovery operation and the CPT indicate which AIJ
sequence number to apply next and the last committed TSN for each page.
This information guides you toward making your database consistent and
accessible again by directing you to apply journals in a specific order. See the
Oracle RMU Reference Manual for additional examples.

When the restore and recovery operations are complete and if journaling is
now disabled, you should enable journaling again and back up your database.
Doing this will ensure that you can restore and fully recover your database
should this become necessary.

8.8 Restoring Only the Root File from a Database Backup File
If the database root (.rdb) file becomes corrupt as indicated by a verify
operation, or if the database root file is accidentally deleted or lost due to a
disk failure, normally you must restore the entire database to use it again.
This task takes time if you have a very large database. An alternative is to
restore just the database root file from a recent backup file by using the RMU
Restore Only_Root command.

The RMU Restore Only_Root command permits you to:

• Restore only the .rdb file and optionally specify a new file and directory
specification for the .rdb file.

• Restore only the .rdb file and optionally update the .rdb file and change
database-wide parameters (number of cluster nodes, number of users,
global buffer parameters, local buffer prameters, and the mode for opening
the database).

8–22 Restoring Your Database

• Restore only the root file and optionally update the .rdb file with the
exact file locations and versions for each specified storage area (.rda) and
snapshot (.snp) file, update each of four storage area parameters (page size,
SPAM threshold values, setting the write-once and read/write attribute,
and enabling or disabling space area management (SPAM) pages), and
update one .snp file parameter (file allocation size).

• Restore only the .rdb file and optionally set the next TSN and commit
sequence number (CSN) values to values equal to or greater than the
values recorded in the backup file.

• Restore only the .rdb file and optionally initialize all TSN values in the
database to the value 0.

• Restore only the .rdb file and optionally enable or disable after-image
journaling, or continue after-image journaling but start a new .aij file.

• Restore only the .rdb file from tape, and optionally specify the set of tape
labels on which the backup file resides and, if the initial tape volume is
already mounted, whether it should be rewound before being read.

Caution

If you plan to use the RMU Restore Only_Root command for restoring
an .rdb file, plan your use very carefully. Misuse of this command,
such as specifying incorrect .rda and .snp file information during a
restore only-root operation, can result in a corrupt database if the
.rdb file is incorrectly updated. For example, if the .rdb file either
no longer points to the set of correct database files including correct
version numbers of these files, the database is unusable. In addition,
if you reset the database TSN and CSN values and have after-image
journaling enabled, you must create a new .aij file and immediately
back up your database.

An .aij file containing discontinuous TSN and CSN numbers (that is, a
gap between the last and next TSN and CSN values) or a gap between
TSN and CSN numbers between two successive .aij files cannot be
rolled forward beyond the point of discontinuity, making your database
inconsistent. Refer to the Oracle RMU Reference Manual for further
considerations and restrictions when using this command. Be prepared
to restore your entire database should your database become corrupt or
inconsistent from misuse of this command.

Restoring Your Database 8–23

The following considerations and restrictions apply when using the RMU
Restore Only_Root command:

• Be sure to correctly restore the .rdb file so that all .rdb file pointers are
consistent with the actual set of existing database files.

• Be sure the database backup file is recent.

There are either no known differences between the database backup
(.rbf) file and the missing root file or the differences are relatively few
and are well known. Both situations pose the least risk in making the
database usable again and both are relatively easy situations from which to
recover. All differences must be resolved. You must determine what these
differences are and determine how the .rdb file will be updated to resolve
each difference. Some differences can be resolved by restoring the .rdb
file and by specifying specific qualifiers and parameter values to update
the .rdb file. Other differences may require that the .rdb file be updated
manually by using the SQL interface after the .rdb file is restored. Finally,
some differences may offer no alternative but to restore the entire database
to make it usable again.

Note

If after-image journaling is enabled, you cannot roll forward the .aij file
to update the .rdb file with the most current database-wide parameter
and storage area parameter changes that were logged in the .aij file
since the last backup operation. Rolling forward the .aij file makes your
.rdb file inconsistent with the area files, thereby making your database
inconsistent. The only alternative is to perform the restore-only root
operation and manually update the .rdb file by using the SQL ALTER
DATABASE statement.

This procedure makes the required changes to any of the database-wide
parameters and storage or snapshot area parameters that were made
or that occurred since the last backup operation and that could not
be changed by using the restore only-root operation. Under some
circumstances (for example, extending an area file) you cannot update
the .rdb file manually to indicate that an area file extension has
occurred. This is an instance in which affected areas must be restored
and recovered to make the database usable again.

• The number of storage areas has not changed since the last backup
operation.

8–24 Restoring Your Database

If a storage area has been deleted then you must restore the entire
database to make it usable again.

• You must perform a complete and full backup operation of your database
immediately following a successful restore-only root operation.

If after-image journaling is enabled from the restore-only root operation, a
new .aij file is created, or after-image journaling is being continued, a new
.aij file must be created. The combination of the new backup file and the
new .aij file provides a consistent point from which to roll forward should
subsequent recovery be necessary.

• You must correctly reset the TSN and CSN values in your restored .rdb file
if they are different from the values stored in the backup file.

If the TSN and CSN values are set to a value lower than the value stored
in the original .rdb file, the database becomes corrupt and may return
incorrect data or cause application failures. Also, if the TSN and CSN
values are not set to the exact next TSN and CSN values that were stored
in the original .rdb file, there will be a discontinuity in the journaling if
after-image journaling is enabled. If you permit these values to increment
by the default of one million (when you specify the Set_Tsn qualifier
without specifying the TSN and CSN values), you must perform a full and
complete backup operation for the reasons mentioned previously.

From this list of restrictions and considerations for using the RMU Restore
Only_Root command, you should realize that successful use of this command
requires some prior planning. To ensure success in using the RMU Restore
Only_Root command, do the following tasks:

• Obtain a recent backup file of your database and regularly back up
your database after modifying database-wide, storage and snapshot area
parameters.

• Obtain a very recent output file by using the Options=Debug qualifier that
contains the contents of the .rdb file header before the .rdb file was lost, so
that you can compare its contents with the contents of your most recent
backup file.

• Enable after-image journaling so you can check the .aij file for the highest
TSN and CSN numbers of the last and most recently committed transaction
from which you can determine what the next TSN and CSN values should
be.

Restoring Your Database 8–25

Making the database usable again with the restore-only root operation depends
on making the restored .rdb file current with the contents of the .rdb file that
was lost and consistent with the storage and snapshot area information. The
difficulty depends on how much the lost .rdb file’s contents actually differ from
that of the most recent .rbf file. Differences can be estimated and gauged by
comparing the contents of the most recent output file of the .rdb file header
with the contents of most recent .rbf file. The following list describes various
scenarios, from best case to worst case, that are possible when comparing a
copy of the lost .rdb file’s contents with that of the most recent .rbf file:

• There are no differences.

The best case is that there are no differences between the contents of the
header portions of these two files. That is, no transactions have occurred
to increment the TSN and CSN numbers in the .rdb file since the database
was last backed up. Therefore, you need to restore only the .rdb file to
make the database usable again and at the same time reset the TSN and
CSN values to the values indicated in the .rbf file. If after-image journaling
is enabled, display the contents of the .aij file and search for the TSN and
CSN values that are higher than the next TSN and CSN values in the .rbf
file to confirm this.

• Only the TSN and CSN values are different.

The next best case is that there was some transaction activity and only
the TSN and CSN values are different. Now you must either estimate how
much transaction activity occurred so you can estimate what the next TSN
and CSN values should be and set these values either to exactly what they
should be, to a little higher than they were, or to a much higher value if
you cannot make a reasonable estimate. You can check the contents of your
.aij file for the CSN and TSN value for the last committed transaction.
This assumes that there are no outstanding recovery-unit journal (.ruj)
files to be recovered by one or more database recovery (DBR) processes if
the database failed due to a system problem. Again, you need to restore
only the .rdb file to make the database usable again, reset the TSN and
CSN values to new higher values, and if after-image journaling is enabled,
create a new .aij file. A backup operation of the database is required
immediately after restoring the .rdb file to ensure that the database can be
rolled forward from a point that is consistent with this most recent .rbf file,
should the database need to be restored again in the near future.

• The TSN and CSN values are different, plus some database-wide, or
storage area, or snapshot parameters are different and can be reset by
using the restore-only root command qualifiers.

8–26 Restoring Your Database

Next in the order of best case scenarios is that you must update some
additional parameter settings for the database, storage, and snapshot
areas, and there are qualifiers for doing this operation. You might have
gathered this information from keeping an up-to-date activity log of
changes you have made to database, storage, or snapshot areas along with
a copy of the most recent debug output display of the .rdb file header that
shows the current settings before the .rdb file was lost, along with the next
TSN and CSN values. You need to reset only these parameters, using the
available qualifiers for the restore-only root operation.

• The TSN and CSN values are different, plus many database-wide, storage
area, or snapshot parameters are different and can be reset only by using
the SQL interface.

Next in increasing difficulty is the scenario in which you must reset some
database, storage, or snapshot area parameters that can only be reset by
using the SQL ALTER DATABASE statement.

• The TSN and CSN values are different, plus some database-wide, storage
area, or snapshot parameters are different, and none of these parameters
can be reset manually.

An even more difficult case is that there is some parameter or group
of parameters that have changed but cannot be reset by any available
interface or set of tools. For example, you might discover that a file
extended and that you cannot manually update this kind of information
in the .rdb file. Because this represents a potential inconsistency between
your restored .rdb file and the area files that cannot be corrected, your
only alternative is to restore and recover the area to make the area usable
again.

• The disk containing the .rdb file becomes inoperable while there are active
updates in the database.

Finally, an even worse case is if the .rdb file is completely inaccessible,
.ruj file recovery cannot be performed, and any or all of the storage
areas are inconsistent. Restoring the .rdb file and resolving all the .rdb
file differences still does not permit .ruj file recovery because all the
information needed for controlling the recovery is in the lost .rdb file. The
only way to recover from this situation is to restore and recover the entire
database.

In an extremely heavy transaction environment over a considerable period
of time, your database TSN and CSN numbers may approach the maximum
allowable value of 4,294,967,295. Before this maximum allowable value is
reached, you should initialize all TSN and CSN values to zero, create a new
.aij file if after-image journaling is enabled, and immediately back up your

Restoring Your Database 8–27

database. No warning message displays if you approach or reach this value,
and the values for this parameter do not automatically reset themselves to
zero but cause database activity to cease until these values are reset to zero.
Once you reset these values to zero, you are immediately required to back up
your database, and start a new .aij file if after-image journaling is enabled, to
provide a consistent point to roll forward from should subsequent recovery be
necessary.

Example 8–16 shows how to check the current value for the TSN and CSN,
to restore only the .rdb file and to initialize the TSN and CSN values to zero,
to create a new .aij file if after-image journaling is enabled, to check that
the values are reset, and then, immediately following the restore-only root
operation, to back up the database.

Example 8–16 Performing a Restore-Only Root Operation and Initializing the
TSN and CSN Values to Zero

$! Show the current next CSN and TSN values and note that the maximum
$! allowable value of 4,294,967,295 is very close.
$
$ RMU/DUMP/HEADER /OPTION=DEBUG DB_DISK:[MFPERS]MF_PERSONNEL

.

.

.
RWROOT @7FDDF77C NEXT_CSN = 4294967280. NEXT_TSN = 4294967290.

.

.

.
$
$! Restore only the .rdb file and initialize the TSN and CSN values
$! to zero and start a new .aij file.
$
$ RMU/RESTORE/ONLY_ROOT /INITIALIZE_TSNS -
_$ DBS_BACKUPS:[MFPERS]MFPERS_FULLBKUP.RBF
_$ /AFTER_JOURNAL=MFPERS.AIJ
$
$! Check that the current next TSN and CSN values are reset to zero.
$
$ RMU/DUMP/HEADER /OPTION=DEBUG DB_DISK:[MFPERS]MF_PERSONNEL

.

.

.
RWROOT @7FDDF77C NEXT_CSN = 0. NEXT_TSN = 0.

.

.

.

(continued on next page)

8–28 Restoring Your Database

Example 8–16 (Cont.) Performing a Restore-Only Root Operation and
Initializing the TSN and CSN Values to Zero

$
$! Immediately back up the database.
$
$ RMU/BACKUP DB_DISK:[MFPERS]MF_PERSONNEL -
_$ DBS_BACKUPS:[MFPERS]FULL_BACKUP.RBF

Assume that your .rbf file is not too recent and that since you last backed up
your database, you made the RESUME_LISTS storage area containing list
data a write-once storage area and then moved it to a write-once, read-many
(WORM) optical device. After completing this operation, you lost your .rdb file.
Your .rbf file knows nothing of these changes. For this reason, you want to
restore only the .rdb file and update the .rdb file with the current location of
the RESUME_LISTS storage area, the correct version of the resume_lists.snp
file, and reset the WORM attribute for the RESUME_LISTS storage area in
the .rdb file. Example 8–17 shows how to check the file locations and version
numbers for the RESUME_LISTS storage area and .snp file, restore only the
.rdb file while specifying the new location for the RESUME_LISTS storage
area and the correct version for the resume_lists.snp file, and reset the WORM
attribute for the RESUME_LISTS storage area.

Example 8–17 Performing a Restore-Only Root Operation and Specifying
.rda File, WORM, and .snp File Parameters

$! Check the location and version number of the RESUME_LISTS storage area
$! on the WORM optical disk device ODA0 and the resume_lists.snp file on
$! disk device DISK1.
$
$ DIR WORM1:[MFPERS]RESUME_LISTS.RDA;1
Directory WORM1:[MFPERS]

RESUME_LISTS.RDA;1

Total of 1 file.
$
$ DIR DISK1:[MFPERS]RESUME_LISTS.SNP
Directory DISK1:[MFPERS]

RESUME_LISTS.SNP;2

Total of 1 file.

(continued on next page)

Restoring Your Database 8–29

Example 8–17 (Cont.) Performing a Restore-Only Root Operation and
Specifying .rda File, WORM, and .snp File Parameters

$
$! Restore only the .rdb file and specify the actual location of the
$! resume_lists.rda file, the correct version of the resume_lists.snp
$! file, reset the WORM attribute for the RESUME_LISTS storage area
$! in the .rdb file, and create a new .aij file.
$
$ RMU/RESTORE/ONLY_ROOT DBS_BACKUPS:[MFPERS]MFPERS_FULLBKUP.RBF -
_$ RESUME_LISTS /FILE=WORM1:[MFPERS]RESUME_LISTS.RDA /WORM
_$ /SNAPSHOT=(FILE=DISK1:[MFPERS]RESUME_LISTS.SNP;2)
_$ /AFTER_JOURNAL=MFPERS.AIJ
$
$! Display the updated .rdb file to show the changes made.
$

.

.

.
Storage area RESUME_LISTS

Area ID number is 9
Filename is "WORM1:[MFPERS]RESUME_LISTS.RDA;1"

.

.

.
Status...
Area has the WORM attribute

.

.

.
Snapshot area for storage area RESUME_LISTS

Area ID number is 19
Filename is "DISK1:[MFPERS]RESUME_LISTS.SNP;2"

.

.

.
$
$! Verify the .rdb file; no errors returned indicates a sound .rdb file.
$
$ RMU/VERIFY/ROOT DB_DISK:[MFPERS]MF_PERSONNEL
$

(continued on next page)

8–30 Restoring Your Database

Example 8–17 (Cont.) Performing a Restore-Only Root Operation and
Specifying .rda File, WORM, and .snp File Parameters

$
$! Check that the next TSN and CSN values are incremented by
$! default to 1 million plus the value in the backup file.
$
$ RMU/DUMP/HEADER /OPTION=DEBUG DB_DISK:[MFPERS]MF_PERSONNEL

.

.

.
RWROOT @7FDDF77C NEXT_CSN = 1000072. NEXT_TSN = 1000088.

.

.

.
$
$! Immediately back up the database.
$
$ RMU/BACKUP DB_DISK:[MFPERS]MF_PERSONNEL -
_$ DBS_BACKUPS:[MFPERS]FULL_BACKUP.RBF

If you plan to use the RMU Restore Only_Root command to restore the .rdb
file, be certain that your database backup (.rbf) file is recent or at the very
least that you back up your database following changes to any database-wide
parameters, storage area parameters, and .snp file parameters. You should
also set up a regular procedure to save the contents of the debug form of the
.rdb file header into an output file. You do this so you can obtain the most
current copy of the database parameter settings in case you lose the .rdb file.
These parameter settings can be compared with the contents of the .rbf file to
find any differences, such as the next TSN and CSN values before the .rdb file
was lost.

Using this strategy to find differences between the .rbf file and the most recent
copy of the .rdb header allows you to track minor differences, such as different
next TSN and CSN values. Finding these small differences permits you to
restore the .rdb file fairly quickly and successfully. As mentioned previously,
the more differences there are between the last .rbf file and the last display of
the .rdb header (before you lost the .rdb file), the more difficult it is to make
the restored .rdb file consistent with the .rda and .snp files, if a restore-only
root operation is even possible.

Restoring Your Database 8–31

8.9 Restoring a Database Directly from Tape
There are two ways of restoring .rbf files directly from tape. Each complements
the backup methods described in Section 7.13.

• Restore the database from one tape device, from one or more tape volumes,
loaded sequentially.

• Restore the database from multiple tape devices, from multiple tape
volumes.

Use a single tape drive for restoring small databases that all fit on one backup
tape or when there is only one tape device on the system. Use multiple tape
drives for restoring moderate to very large backed up databases and when two
or more tape devices are part of the system. The restore procedure for both is
generally the same; the differences are in how many devices are requested to
be allocated, mounted, dismounted, and deallocated in each operating system
command, and how many devices are specified in the RMU command.

8.9.1 Using a Single Tape Drive
When you are using only one tape, you can restore a database directly from
tape by following this procedure. When using two or more tapes on one tape
drive, you must dismount/mount the tapes to load the first tape for the optional
step of verifying the backup file before restoring the database. The procedure
steps follow:

1. Allocate the tape drive.

2. Mount the tape.

3. Perform the restore operation.

4. Dismount the tape.

5. Deallocate the tape drive.

6. Verify the database.

This procedure (shown in Example 8–18) assumes that you have deleted any
previous version of the database from your system.

8–32 Restoring Your Database

Example 8–18 Using a Single Tape Drive for a Full Restore Operation

$ ALLOCATE 111MUA0:
$
$ MOUNT/FOREIGN 111MUA0:
$
$ RMU/RESTORE /LOG /REWIND /LABEL=BACK01 111MUA0:PERS_FULL_MAR30.RBF
$
$! The Rewind qualifier rewinds the tape to the beginning.
$! The volume label is that label name specified in the
$! Label qualifier.
$
$ DISMOUNT 111MUA0:
$
$ DEALLOCATE 111MUA0:
$
$ RMU/VERIFY DB_DISK:[MFPERS]MF_PERSONNEL
$
$! Verify your restored database to be sure it is intact.

If your database is large, you may need to use more than one tape on your
single tape device. In this case, you are prompted to mount additional tapes as
each is read and restored up until the restore operation is complete.

8.9.2 Using Multiple Tape Drives
You can restore a database directly from two or more tapes on two or more
tape devices with the following procedure:

1. Allocate each tape drive.

2. Mount the first tape.

3. Perform the restore operation.

4. Dismount the last tape.

5. Deallocate each tape drive.

6. Verify the database (this is optional).

This procedure (shown in Example 8–19) assumes that you have deleted any
previous version of the database from your system.

Restoring Your Database 8–33

Example 8–19 Using Multiple Tape Drives for a Full Restore Operation

$ ALLOCATE 111MUA0:
$ ALLOCATE 222MUA1:
$
$ MOUNT/FOREIGN 111MUA0:
$
$ RMU/RESTORE /LOG /REWIND /LABEL=(BACK01,BACK02) -
_$ 111MUA0:PERS_FULL_MAR30.RBF, 222MUA1:
$
$ DISMOUNT 111MUA0:,222MUA1:
$
$ DEALLOCATE 111MUA0:
$ DEALLOCATE 222MUA1:
$
$ RMU/VERIFY DB_DISK:[MFPERS]MF_PERSONNEL

In Example 8–19, the restore operation could use two different HSC devices in
a multithreaded operation and restore the database to a similar configuration
from which it was backed up. This is accomplished by simultaneously reading
input through two different HSC devices and concurrently writing output to
disks until the restore operation is complete. The information that follows
explains how this is done.

When you have multiple tapes to restore, you should be sure to use the Journal
qualifier in the backup operation to improve tape performance in the restore
operation. The contents of the .jnl file are used in the restore operation. It
contains a description of the backup command, the backup operation, the
backup file name, the root file specification, the drive specification; the journals
and areas backed up, their size, the high TSN and CSN for each journal, the
high TSN for each area, the area ID and page size, the AIJ sequence number
to use to recover the area; the snapshot area ID, its file specification and
page size; and the relative volume used to back up each area and its starting
location. To display the contents of a .jnl file, use the following command:

$ RMU/DUMP/BACKUP_FILE MFPERS1.RBF/JOURNAL=BKUP_JOURNAL.JNL/OPTION=JOURNAL

See the Oracle RMU Reference Manual for an example of the contents of a .jnl
file.

For large restore operations, if you backed up your database by using the
Loader_Synchronization and Journal qualifiers, you must preload your tape
volumes into the loaders or stackers in the same order in which they were
backed up to achieve an unattended, concurrent restore operation. Oracle
RMU uses the Journal qualifier to read the contents of the .jnl file to determine
what the tape labels are and the order in which to expect to read the tapes.

8–34 Restoring Your Database

When you use the Journal qualifier you do not need to specify the tape labels
with the Label qualifier.

When you specify the Loader_Synchronization qualifier with the RMU Restore
command, all concurrent tape operations must conclude before reading the next
set of tape volumes. This ensures that tapes can be loaded and read in the
loaders or stackers in the order required by the restore operation as specified
by the Label qualifier or the .jnl file. You must also specify the Volumes
qualifier and the total number of volumes that must be restored to make this
a concurrent restore operation. If a mistake is made while loading the tape
volume in the loader or stacker, Oracle RMU prompts the operator for tape
disposition as described in Section 7.13.4.

For very large backup and restore operations requiring many tape volumes,
you should consider using a third-party storage library system to manage the
tape labeling, preloading, and restoring of your database.

To control the level of concurrency used by the restore operation, you can
use the Master qualifier to specify which drives are masters and which are
slaves. The control is particularly useful when you also use the Loader_
Synchronization qualifier. If you specify all drives as master drives, the RMU
restore operation reads from all drives concurrently. The drives not designated
as masters automatically become slave drives.

All master drives are read from concurrently and when these tape volumes are
all read, then the tape volumes in the first set of slave drives are read; when
the first set of slave drive tape volumes are all read, then the tape volumes in
the second set of slave drives are read, and so forth. When the tape volumes in
the last slave drive set are all read, then tape volumes in the master drive set
are read and so forth until the database is completely restored. See the Oracle
RMU Reference Manual for an example of this operation.

If after-image journaling was enabled when you backed up the database
and journal files are available and on disk, recovery automatically follows
the restore operation; if journal files are backed up or you want to restore
incrementally, you should specify the Norecovery qualifier in the restore
operation, then manually apply all backed up journal files. If there are any
on-disk journal files, these will automatically be recovered following the rolling
forward of the last backed up journal file in the recovery sequence.

Restoring Your Database 8–35

8.10 Exceeded Quotas During a Database Restore or Backup
Operation

If you receive an exceeded quota error message during either a restore or
backup operation as shown here for a restore operation, you need to check your
DIOLM and ASTLM parameter values:

-SYSTEM-F-EXQUOTA, exceeded quota
%RMU-F-FATALERR, fatal error on RESTORE

The DIOLM and ASTLM parameter values may be too low for the particular
database or the type of backup operation (multithreaded versus single-
threaded), and you need to set these parameter values higher. As a general
rule, use the following algorithm for estimating the DIOLM parameter value
and add 12 to the DIOLM calculated estimate to determine the value for the
ASTLM parameter.

DIOLM = (3 �Number of storage areas+ 5 �Number of output threads)

ASTLM = DIOLM + 12

The number of threads can be determined from inspecting the log of the failed
restore operation. If you received the exceeded quota error message during
a backup operation, inspect the backup log to determine how many output
threads there were. Find the highest output thread value in the log, and use
that value to estimate the DIOLM and ASTLM parameter values for both the
backup and restore operations.

The estimated value for the DIOLM parameter is higher for the backup
operation if you are using multithreaded backup operations to tape,
so parameter estimates should be based on this kind of operation and
configuration. Therefore, estimate the DIOLM parameter value for the
database on your system with the highest number of storage areas, and for
the multithreaded tape backup operation (if your system is so configured), to
ensure that the DIOLM and ASTLM parameter values are properly set for
backup and restore operations.

8–36 Restoring Your Database

8.11 Modifying Database Characteristics During a Restore
Operation

During a restore operation, you can modify several database characteristics
and storage area characteristics.

You can modify the following database characteristics when restoring a
database:

• Restore the .rdb file access control list (ACL) from the .rbf file by using the
Acl qualifier or use the Noacl qualifier to prevent this.

• Enable or disable after-image journaling, or if already enabled, create a
new .aij file by using the After_Journal or the Noafter_Journal qualifier.

• Specify a journal options file with the Aij_Options qualifier to do any of the
following:

Enable or disable after-image journaling

Reserve more journal slots

Allocate journal space

Specify extent size

Specify manual or automatic AIJ backup operations

Enable or disable journal overwrite

Specify a shutdown timeout value

Enable or disable notification

Enable or disable a journal file cache

Add journals

Specify the file name, a backup file name, the allocation size, and
extent size for each journal added

See the Oracle RMU Reference Manual for more information.

• Retain the original journal files if you do not specify an After_Journal,
Noafter_Journal, Aij_Options, or Noaij_Options qualifier

• Set the maximum number of cluster nodes with the Nodes_Max qualifier.

• Set the maximum number of database users with the Users_Max qualifier.

• Change the default global buffer parameters with the Global_Buffers
qualifier.

Restoring Your Database 8–37

• Change the default local buffer parameters with the Local_Buffers qualifier.

• Change the mode for opening the database with the Open_Mode qualifier.

You can modify the following storage area characteristics when restoring a
database:

• Set the space area management (SPAM) threshold values for storage areas
with mixed page format with the Thresholds qualifier.

• Set the number of blocks per page with the Blocks_Per_Page qualifier.

• Enable or disable SPAM pages for a specified storage area with the Spams
or Nospams qualifier.

• Enable or disable the WORM attribute for a specified storage area with the
Worm or Noworm qualifier.

• Change a read/write or write-once area to a read-only area with the Read_
Only qualifier or change a read-only or write-once area to a read/write area
with the Read_Write qualifier.

• Change the automatic file extension attribute for a storage area with
the Extension qualifier to disable it (Extension=Disable) or enable it
(Extension=Enable).

• Change the page size for a storage area with the Blocks_Per_Page qualifier.

• Change the .snp file allocation with the Snapshot=Allocation qualifier and
a new file specification with the Snapshot=File qualifier.

• Change the file specification for a storage area with the file qualifier.

Modifying these database characteristics during an RMU Restore operation,
compared to using an SQL EXPORT and IMPORT operation, has one
immediate benefit—the RMU Restore operation may be several times faster
because it is not restructuring the database. If these are the only database
characteristics you want to modify, this may be a preferred method, especially
if you are also planning to restore your database. See the Oracle Rdb7
Guide to Database Performance and Tuning for a comparison of options and
the different ways that these options can be carried out. (The SQL ALTER
DATABASE statement is the preferred way to modify the after-image journal
characteristics and enable its use.)

An even better method to modify database characteristics is to unload the
database, recreate it specifying changed parameters, and load it again. Use the
RMU Extract command to create the data definition language (DDL) procedure
to recreate the database and unload and load procedures for each table. See

8–38 Restoring Your Database

the Oracle RMU Reference Manual for more information on using the RMU
Extract command.

Modifying these two storage area characteristics (SPAM threshold values for
mixed page format storage areas and page size) with a restore operation is not
as useful as an export and import operation or a rebuild (unload it, re-create
the database, and reload it using RMU Extract procedures) of the database for
the following reasons:

• Your storage area is not reorganized.

Old data remains where it was, based on the previous page size and SPAM
thresholds. Rows or records, if fragmented, are still fragmented.

• Only new data is stored based on these new page sizes and SPAM threshold
values.

Over time, as data is archived and replaced by new data, this operation has
a gradual impact on reorganizing your database. However, the preferred
reorganizing tool is the use of the SQL EXPORT and IMPORT statements
for certain changes (buffer size) and the SQL ALTER DATABASE
statement for other database changes. When this operation (SQL EXPORT
or IMPORT or SQL ALTER DATABASE) is complete, the entire database,
both old and new data, is reorganized based on the new specifications.

Caution

The RMU Restore command has parameter qualifiers with positional
semantics. When positioned before the first parameter, the area
parameter qualifiers, Blocks_Per_Page and Thresholds, are global.
When used globally, the specified parameter qualifiers and values affect
all storage areas upon command execution. When positioned after
each instance of a File or Area qualifier, the area parameter qualifiers,
Blocks_Per_Page and Thresholds, are local. When used locally, the
specified parameter qualifiers and values affect only the specified
storage area and file name. See the Oracle RMU Reference Manual for
more information on the positional semantics of Oracle RMU command
qualifier parameters.

Care should be exercised if you intend to use the RMU Restore command to
specify different SPAM thresholds and page sizes for specific storage areas.

Restoring Your Database 8–39

For reorganizing data in storage areas when export and import operations
take too long to complete, use the RMU Unload and RMU Load commands,
especially for large databases. You can also use the REORGANIZE clause in
the SQL ALTER DATABASE statement to move rows among storage areas.
For example, use this clause if you want to move rows across two or more
storage areas if a table and index is partitioned, or move rows among pages
in the same storage area to pages on or closer to the new target pages if there
is space. However, for both of these operations, you cannot modify any of the
database characteristics.

8.11.1 Modifying After-Image Journaling Characteristics
After-image journaling characteristics can be modified during a restore
operation by using either the After_Journal or the Aij_Options qualifier. The
After_Journal qualifier is maintained for compatibility with versions of Oracle
Rdb prior to V6.0 and can only be used to create a single extensible journal file.
The Aij_Options qualifier can be used to create both a single extensible journal
file or multiple fixed-size journal files. The Aij_Options qualifier uses a journal
options file in which you specify the journaling configuration you want to use
for your database. The format for the Aij_Options options file is described later
in this section.

By default, if you restore a database and do not specify an After_Journal,
Noafter_Journal, Aij_Options, or Noaij_Options qualifier and automatic
recovery can complete, the original journal state (enabled or disabled) is
restored from the backup file and the restored database tries to reuse the .aij
file or files.

If you restore a database and specify the After_Journal qualifier with no file
name, a new version of the single extensible after-image journal (.aij) file with
the same name as the journal that is active at the time of the database backup
operation is created (as shown in Example 8–20), if after-image journaling was
enabled when you backed up the database.

Example 8–20 Modifying After-Image Journaling Characteristics During a Restore Operation

$ RMU/RESTORE/NEW_VERSION/AFTER_JOURNAL/LOG DBS_BACKUPS:[MFPERS]PERS_FULL.RBF
.
.
.

%RMU-I-LOGFILACC, created after-image journal file AIJ_DISK:[MFPERS]MF_PERSONNEL.AIJ;12

In Example 8–20, the RMU Restore command used the default .aij file name in
the backup file to create a new version of mf_personnel.aij during the restore
operation.

8–40 Restoring Your Database

In either of the previous restore operation examples, if for some reason
automatic recovery cannot complete (for example, journals are backed up or
unavailable, such as on a disk that is off line), journaling is disabled and you
receive a warning message similar to the following:

%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJRECBEG, recovering after-image journal "state" information
%RMU-I-AIJRSTAVL, 0 after-image journals available for use
%RMU-I-AIJISOFF, after-image journaling has been disabled
%RMU-I-AIJRECEND, after-image journal "state" recovery complete
%RMU-W-USERECCOM, Use the RMU/RECOVER command. The journals are not available.

If you want to disable after-image journaling during a restore operation,
specify either the Noafter_Journal qualifier or the Aij_Options qualifier with no
journal file option name specified with the RMU Restore command, as shown
in Example 8–21.

Example 8–21 Disabling After-Image Journaling During a Restore Operation

$ RMU/RESTORE/NEW_VERSION/NOAFTER_JOURNAL -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL.RBF

$ RMU/RESTORE/NEW_VERSION/AIJ_OPTIONS -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL.RBF

The Noafter_Journal qualifier or the Aij_Options qualifier with no file specified
has no effect if after-image journaling was not enabled for the database when
it was backed up.

Use either the After_Journal qualifier or use the Aij_Options qualifier and
specify a journal options file that contains a new journal file specification and
enables journaling if you want to change the file specification and enable the
.aij file during a restore operation, as shown in Example 8–22.

Example 8–22 Changing the After-Image Journal File Specification During a
Restore Operation

$ DEFINE/SYSTEM NEW_DISK 2DUA12:[PERS.AIJ.MFPERS]
$ RMU/RESTORE/NEW_VERSION -
_$ /AFTER_JOURNAL=NEW_DISK:MF_PERSONNEL.AIJ -

PERS_FULL.RBF

The commands shown in Example 8–22 create an after-image journal file
called mf_personnel.aij in the device and directory pointed to by the NEW_
DISK logical name.

Restoring Your Database 8–41

To create a journal options file, use the RMU Show After_Journal command
and specify an output file to capture the current journal configuration. Edit the
output file to create your options file. For example:

$ RMU/SHOW AFTER_JOURNAL MF_PERSONNEL /OUTPUT=AIJ_CONFIG.OPT
JOURNAL IS DISABLED -

RESERVE 1 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS ENABLED - ! Operators: OPER1
BACKUPS ARE MANUAL -
CACHE IS DISABLED

$

For example, to create three fixed-size journals, you might create a journal
options file that contains the following configuration:

JOURNAL IS ENABLED -
RESERVE 4 -
ALLOCATION IS 512 -
EXTENT IS 512 -
OVERWRITE IS DISABLED -
SHUTDOWN_TIMEOUT IS 60 -
NOTIFY IS ENABLED - ! Operators: CENTRAL, CLUSTER
BACKUPS ARE MANUAL -
CACHE IS DISABLED

ADD JOURNAL JOURN_1 -
FILE DISK11$:[JOURNAL]JOURN_1 -
ALLOCATION IS 512 -
BACKUP DISK21$:[BKUP_JOURNAL]BKUP_JOURN_1.AIJ;

ADD JOURNAL JOURN_2 -
FILE DISK12$:[JOURNAL]JOURN_2 -
ALLOCATION IS 512 -
BACKUP DISK22$:[BKUP_JOURNAL]BKUP_JOURN_2.AIJ;

ADD JOURNAL JOURN_3 -
FILE DISK13$:[JOURNAL]JOURN_3 -
ALLOCATION IS 512 -
BACKUP DISK23$:[BKUP_JOURNAL]BKUP_JOURN_3.AIJ;

Then, restore your database using this journal options file configuration as
follows:

8–42 Restoring Your Database

$ RMU/RESTORE/NEW_VERSION/LOG -
_$ /AIJ_OPTIONS=AIJ_CONFIG.OPT -
_$ DBS_BACKUPS:[MFPERS]PERS_FULL.RBF
%RMU-I-RESTXT_04, Thread 1 uses devices DB_DISK:
%RMU-I-RESTXT_18, Processing options file AIJ_CONFIG.OPT

.

.

.
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file sequence 1
%RMU-I-LOGCREAIJ, created after-image journal file DISK11$:[JOURNAL]JOURN_1.AIJ;1
%RMU-I-LOGCREAIJ, created after-image journal file DISK12$:[JOURNAL]JOURN_2.AIJ;1
%RMU-I-LOGCREAIJ, created after-image journal file DISK13$:[JOURNAL]JOURN_3.AIJ;1

See the Oracle RMU Reference Manual for more information about modifying
the journal configuration when you perform a database restore operation.

8.11.2 Modifying SPAM Thresholds Values
You can modify the threshold values on your space area management (SPAM)
pages for storage areas with mixed page format only during a restore operation
by using the Thresholds qualifier. The Thresholds qualifier is a positional
storage area qualifier that changes the storage area fullness percentage
thresholds for use on SPAM pages. If you do not specify the Thresholds
qualifier in an RMU Restore command, the original threshold values (stored in
the .rdb file) are used. If the storage area pages are uniform, the thresholds
are fixed; they cannot be modified and the Thresholds qualifier is in error. If
you specify fewer than three values, the remaining values will be set at 100%
for those values that were omitted. See Oracle RMU Reference Manual for
examples of modifying the SPAM thresholds for storage areas with mixed page
format.

8.11.3 Modifying Blocks per Page
You can use the Blocks_Per_Page qualifier to increase the size of storage area
pages during a restore operation. By increasing the number of blocks per page
in a particular area, you increase the amount of available space per page in
that area. If your database is getting full, you can use the RMU Restore . . .
/Blocks_Per_Page command to create new available space on each page in a
storage area without interfering with row clustering. Existing rows are not
touched in any way; if some are fragmented, they remain fragmented. But, if
you subsequently modify a fragmented row in the newly restored database, it
may be stored as an unfragmented row if there is now sufficient space for that
row on the page.

If the page size of a storage area is already greater than or equal to the
specified number of disk blocks, this qualifier is ignored.

Restoring Your Database 8–43

The default, Noblocks_Per_Page, causes the original page sizes for a storage
area to be retained from the backed up database.

8.11.4 Restoring List Storage Areas to WORM Optical or Read/Write Disk
Devices

During a restore operation, you can restore read/write list storage areas to
write-once, read-many (WORM) optical disk devices. When you do this, you
must also set the Worm (write-once) attribute and disable the use of SPAM
pages for the specified storage area and optionally set the .snp file allocation
size to a smaller value if you want to conserve disk space. Use the Worm,
Nospams, and Snapshot=(Allocation=N) qualifiers to set these parameters.

Only list storage areas with mixed page format can be restored to WORM
optical disk devices because SPAM pages cannot be disabled for uniform page
format storage areas. Disabling the use of SPAM pages is a requirement for
restoring read/write storage areas to WORM optical disk devices.

You can also restore write-once list storage areas located on WORM optical disk
devices to read/write disk devices. When you do this, you must also use the
Noworm qualifier (read/write attribute), enable the use of SPAM pages for the
specified storage area, and set the .snp file allocation size to a larger value if it
was set previously to a small value to conserve disk space. Use the Noworm,
Nospams, and Snapshot=(Allocation=N) qualifiers to set these parameters.

All three qualifiers, Worm, Spams, and Snapshot=(Allocation=N), are positional
storage area qualifiers that must be properly placed in the command line
to guarantee the desired final result for the specified list storage area. See
the Oracle RMU Reference Manual for more information on using positional
qualifiers.

Example 8–23 shows how to restore a read/write list storage area that was
originally on a read/write disk device to a WORM optical disk device, how to
set the WORM attribute, how to disable the use of SPAM pages, and how to set
the .snp file allocation to three pages for the associated storage area.

Example 8–23 Restoring a List Storage Area to a WORM Optical Disk Device
from a Read/Write Disk Device

$ RMU/RESTORE/NEW_VERSION MFPERS_FULL.RBF -
_$ RESUME_LISTS/FILE=WORM1:[MFPERS]RESUME_LISTS.RDA /WORM /NOSPAMS
_$ /SNAPSHOT=(ALLOCATION=3)

8–44 Restoring Your Database

Example 8–24 shows how to restore a write-once list storage area that was
originally on a WORM optical disk device to a read/write disk device, how to
set the NOWORM attribute, how to enable the use of SPAM pages, and how to
set the .snp file allocation to 50 pages for the specified storage area.

Example 8–24 Restoring a List Storage Area to a Read/Write Disk Device
from a WORM Optical Disk Device

$ RMU/RESTORE/NEW_VERSION MFPERS_FULL.RBF -
_$ RESUME_LISTS/FILE=DISK3:[MFPERS]RESUME_LISTS.RDA /NOWORM /SPAMS
_$ /SNAPSHOT=(ALLOCATION=50)

8.12 Performing Additional Tasks During a Restore Operation
During a restore operation, you can perform the following additional tasks:

• Use an options file.

• Create a duplicate database.

• Move database files to other devices.

• Move data dictionary information to other devices.

• Update the data dictionary.

8.12.1 Using an Options File to Restore a Database
When you must make many changes to your database during a restore
operation and you want to record these changes and apply them to the restore
operation, or if the length of your operating system Oracle RMU command line
exceeds the maximum allowable number of characters, you can use an options
file that contains all your specified changes. Then, reference the options file in
the Oracle RMU command line by using the Options qualifier. The rules for
using an options file follow:

• The options file contains storage area names, each of which is followed
by the storage area qualifiers to be applied to that storage area. It has a
default file type of .opt.

• Each storage area name is placed on its own line in the file. Do not
separate the storage area names with a comma.

• You can use the storage area qualifiers Blocks_Per_Page, File,
Thresholds, Worm, and Spams and the snapshot area qualifiers
Snapshot=(File=filename) and Snapshot=(Allocation=N) in the options
file.

Restoring Your Database 8–45

• You can use the operating system line continuation character or the
comment character in the options file.

Example 8–25 shows how to restore a database by using an options file.
Assume that you have created SIGNATURES and PHOTOS storage areas
containing the SIGNATURES and PHOTOS tables respectively, each of which
contains list data (personnel signatures and ID photos) for the mf_personnel
database. In this example, the SIGNATURES, and PHOTOS storage areas are
restored to a WORM optical disk device. Each storage area is given the WORM
attribute, each has the use of SPAM pages disabled, and each associated .snp
file is allocated less space. In addition, the RESUME_LISTS storage area is
restored to a read/write device, and because it has the read/write attribute
the use of SPAM pages is enabled. The associated .snp file is allocated more
space.

Example 8–25 Using an Options File to Restore a Database

$ TYPE WORM_CHANGES.OPT
SIGNATURES/FILE=WORM22:[MFPERS]SIGNATURES.RDA /WORM /NOSPAMS -

/SNAPSHOT=(ALLOCATION=3)
PHOTOS/FILE=WORM22:[MFPERS]PHOTOS.RDA /WORM /NOSPAMS -

/SNAPSHOT=(ALLOCATION=3)
RESUME_LISTS/FILE=DISK3:[MFPERS]RESUME_LISTS.RDA /NOWORM /SPAMS -

/SNAPSHOT=(ALLOCATION=50)
$
$ RMU/RESTORE/NEW_VERSION /OPTIONS=WORM_CHANGES.OPT MFPERS_LISTS_FULL.RBF

All other database .rda and .snp files not specified in the .opt file are restored
to the disk and directory specified in the .rbf file.

Example 8–26 shows how to use an .opt file to restore a database and how to
change the .rda area and .snp file locations listed in the .rbf file. A new .aij file
is created as specified in the command line.

8–46 Restoring Your Database

Example 8–26 Using an Options File to Relocate All Database Files to
Restore a Database

$ TYPE AREA_CHANGES.OPT
RDB$SYSTEM /FILE=DB_DISK12:[MFPERS]MF_PERS_DEFAULT -

/SNAPSHOT=(FILE=DB_DISK12:[MFPERS]MF_PERS_DEFAULT)
MF_PERS_SEGSTR /FILE=DISK13:[MFPERS]MF_PERS_SEGSTR -

/SNAPSHOT=(FILE=DISK20:[MFPERS]MF_PERS_SEGSTR)
EMPIDS_LOW /FILE=DISK14:[MFPERS]EMPIDS_LOW -

/SNAPSHOT=(FILE=DISK19:[MFPERS]EMPIDS_LOW)
EMPIDS_MID /FILE=DISK15:[MFPERS]EMPIDS_MID -

/SNAPSHOT=(FILE=DISK 18:[MFPERS]EMPIDS_MID)
EMPIDS_OVER /FILE=DISK16:[MFPERS]EMPIDS_OVER -

/SNAPSHOT=(FILE=DISK17:[MFPERS]EMPIDS_OVER)
DEPARTMENTS /FILE=DISK17:[MFPERS]DEPARTMENTS -

/SNAPSHOT=(FILE=DISK16:[MFPERS]DEPARTMENTS)
SALARY_HISTORY /FILE=DISK18:[MFPERS]SALARY_HISTORY -

/SNAPSHOT=(FILE=DISK15:[MFPERS]SALARY_HISTORY)
JOBS /FILE=DISK19:[MFPERS]JOBS -

/SNAPSHOT=(FILE=DISK14:[MFPERS]JOBS)
EMP_INFO /FILE=DISK20:[MFPERS]EMP_INFO -

/SNAPSHOT=(FILE=DISK13:[MFPERS]EMP_INFO)

$ RMU/RESTORE /OPTIONS=AREA_CHANGES.OPT MFPERS_FULL.RBF -
_$ /AFTER_JOURNAL=AIJ_DISK21:[MFPERS]MF_PERSONNEL.AIJ

See Section 8.12.3 for another example of moving database files during a
restore operation.

8.12.2 Creating a Duplicate Database During a Restore Operation
You can create a duplicate copy of your database that has a unique identity
from the original backed up database by using the RMU Backup and
RMU Restore commands and by restoring the database, using the Duplicate
qualifier. The duplicate database has the same contents as the original
database but has a different and unique identity based on its creation
timestamp. The default, when no Duplicate qualifier is specified in the
command line or when the Noduplicate qualifier is specified in the command
line, is to restore the original database and its set of files to the exact locations
specified in the backup file and with the same identity as the original database
that was backed up. The steps for creating a duplicate database are:

1. Create a full and complete database .rbf file.

2. Restore the full and complete .rbf file, specify the Duplicate qualifier, and
specify new names and locations for the database files if they are to reside
on the same system or specify new device names if the database files are
going to reside on a another system with a different set of disk devices.

Restoring Your Database 8–47

You can use the Directory qualifier of the RMU Restore command to move
all database files (the .rdb, .rda, and .snp files) to a different directory, if
desired. Use the Root, File, and Snapshots qualifiers to move the database
files individually to different directories. By default, files are restored to the
original device and directory locations specified in the .rbf file; this information
is stored in the .rdb file that was backed up.

You can use the Directory, Root, File, and Snapshots qualifiers in combination
to specify a default directory and override the default for specific files. For
example, the mf_personnel database files are moved according to the qualifiers
used in the RMU Restore command shown in Example 8–27.

Example 8–27 Making a Duplicate Copy of the Database and Moving
Database Files to New Locations During a Restore Operation

$ RMU/RESTORE/DUPLICATE /DIRECTORY=DISK22:[PERS.STOR] -
_$ /ROOT=DB_DISK2:[MFPERS] PERS_FULL.RBF -
_$ EMPIDS_LOW/FILE=DISK44:[MFPERS]EMPIDS_LOW.RDA -
_$ EMPIDS_MID/SNAPSHOTS=(FILE=DISK55:[MFPERS]EMPIDS_MID.SNP) -
_$ /AFTER_JOURNAL=AIJ_DISK2:[MFPERS]MF_PERSONNEL.AIJ
$

In this example, the Directory qualifier causes all .rda and .snp files, except
those with local qualifiers, to be moved to DISK22:[PERS.STOR]. Your original
database still resides on the same system, disk devices, and directories as
before you backed it up.

The following files are not located on DISK22:[PERS.STOR]:

• The .rdb file is placed on DB_DISK2:[MFPERS]MF_PERSONNEL.RDB;1.
DB_DISK2 is a new logical name for 2DUA88:[PERS.ROOT], its new
location. The version number, ;1, indicates that because its identity is
different from the original database after it is restored, this file is the only
version in that directory.

• The storage area file EMPIDS_LOW.RDA;1 is moved to DISK44:[MFPERS].
DISK44 is a new logical name for 2DUA44:[PERS.STOR]. The
original file specification was 2DUA3:[PERS.STOR.MFPERS]EMPIDS_
LOW.RDA;1.

• Only the EMPIDS_MID snapshot file, empids_mid.snp;1, is located on
DISK55:[MFPERS].

• A new .aij file is created in AIJ_DISK2:[MFPERS], a new location.

8–48 Restoring Your Database

You cannot use the Duplicate qualifier with an incremental restore operation
in which the Incremental qualifier is specified or in a by-area restore operation
in which the Area qualifier is specified. Also, the journal files cannot be
interchanged between the original database and its duplicate.

8.12.3 Moving Database Files
You can move your database files, using the RMU Backup and RMU Restore
commands, by restoring the database with a new name. The steps are:

1. Create a full database backup file.

2. Restore the full backup database, specifying new names or locations for the
database files.

You can use the Directory qualifier of the RMU Restore command to move all
database files (the .rdb, .rda, and .snp files) to a single OpenVMS directory,
if desired. Use the Root, File, and Snapshots qualifiers to move database
files individually to different directories. By default, files are restored to the
original device and directory locations; this information is stored in the .rdb file
that was backed up.

You can use the Directory, Root, File, and Snapshots qualifiers in combination
to specify a default directory and override the default for specific files. For
example, the mf_personnel database files are moved according to the qualifiers
used in the RMU Restore command shown in Example 8–28.

Example 8–28 Moving Database Files During a Restore Operation

$ RMU/RESTORE/DIRECTORY=DISK2:[PERS.STOR] /ROOT=DB_DISK:[MFPERS] -
_$ PERS_FULL.RBF -
_$ EMPIDS_LOW/FILE=DISK4:[MFPERS]EMPIDS_LOW.RDA -
_$ EMPIDS_MID/SNAPSHOTS=(FILE=DISK5:[MFPERS]EMPIDS_MID.SNP) -
_$ /AFTER_JOURNAL=AIJ_DISK:[MFPERS]MF_PERSONNEL.AIJ
$

In this example, the Directory qualifier causes all .rda and .snp files, except
those with local qualifiers, to be moved to DISK2:[PERS.STOR]. You should
delete the database after backing it up and before moving it to other disk
devices or directories.

The following files are not located on DISK2:[PERS.STOR]:

• The .rdb file is placed on DB_DISK:[MFPERS]MF_PERSONNEL.RDB;1
(2DUA8:[PERS.ROOT], its original location). The version number, ;1,
indicates that, because you deleted the database prior to moving it, this is
the only version in that directory.

Restoring Your Database 8–49

• The storage area file EMPIDS_LOW.RDA;1 is moved to DISK4:[MFPERS].
DISK4 is a logical name for 2DUA4:[PERS.STOR]. This file was formerly
in 2DUA3:[PERS.STOR.MFPERS]EMPIDS_LOW.RDA;1.

• Only the EMPIDS_MID snapshot file, empids_mid.snp;1, is moved from
DISK6:[MFPERS] to DISK5:[MFPERS].

• A new .aij file is created in AIJ_DISK:[MFPERS], the existing location.

8.12.4 Moving and Updating Data Dictionary Information

OpenVMS
VAX

OpenVMS
Alpha

When moving your database, you can also choose to move data dictionary
information. By default, the RMU Restore command uses the value of the
CDD$DEFAULT logical name to determine the data dictionary directory
in which to check for the database dictionary entry. You can use the Path
qualifier to specify another data dictionary directory. If the data dictionary
directory that the RMU Restore command checks does not contain a copy of the
database dictionary entry (or any of the metadata in the .rdb file), the RMU
Restore command automatically restores the metadata information into that
data dictionary directory. This means that if you specify a new data dictionary
directory when you restore your database, you can create your data dictionary
information in a new directory, as shown in Example 8–29.

Example 8–29 Moving Dictionary Information During a Restore Operation

$ RMU/RESTORE/NEW_VERSION/LOG/PATH=SYS$COMMON:[CDDPLUS]CORP_ACCT
Backup: DBS_BACKUPS:[MFPERS]PERS_FULL.RBF

.

.

.
%RMU-I-LOGINTEGRATE, Integrating DB_DISK:[MFPERS]MF_PERSONNEL.RDB;5 into
CDD path SYS$COMMON:[CDDPLUS]CORP_ACCT
$

Use the Common Dictionary Operator (CDO) utility to verify that the metadata
was properly integrated into the data dictionary as shown in Example 8–30.

Example 8–30 Checking That Metadata Was Moved into the Dictionary After
a Restore Operation

$ DICTIONARY OPERATOR
CDO> DIRECTORY/TYPE=CDD$DATABASE MF_PERSONNEL

8–50 Restoring Your Database

Use the Nocdd_Integrate qualifier with the RMU Restore command if you
do not want to move your metadata information during a restore operation.
Also use Nocdd_Integrate when you do not want to update existing dictionary
information during a restore operation.

For more information about the use of Oracle Rdb databases with a data
dictionary, see the Oracle Rdb7 Guide to Database Design and Definition,
the Using Oracle CDD/Repository on OpenVMS Systems, and the Oracle
CDD/Repository CDO Reference Manual.

Use the Nocdd_Integrate qualifier if you do not want to update data dictionary
information when you restore your database, as shown in Example 8–31.

Example 8–31 Restoring a Database Without Updating the Data Dictionary

$ RMU/RESTORE/NOCDD_INTEGRATE/LOG PERS_FULL.RBF
.
.
.

When the Nocdd_Integrate qualifier is used, the data dictionary is not updated
to record the creation of this database. The default action is to integrate the
metadata information stored in the .rdb file into the dictionary by using one of
the following methods:

• The value specified in the Path=cdd-path qualifier, if specified. If cdd-path
does not start with CDD$TOP or SYS$COMMON:[CDDPLUS], Oracle Rdb
appends the path you enter to the value of the CDD$DEFAULT logical
name.

• If the Path qualifier is not specified, Oracle RMU uses the CDD$DEFAULT
value of the user who entered the RMU Restore command, and the
database file name.

See Section 8.12.4 for specific examples about moving dictionary information.
Oracle RMU ignores the Path qualifier if the user also specified the Nocdd_
Integrate qualifier.

The Nocdd_Integrate qualifier is useful because it can prevent the RMU
Restore command from copying metadata information into the data dictionary
from the .rdb file, if data dictionary information does not exist in the default
or specified data dictionary directory. Thus, the database restore operation can
occur, and then links with the data dictionary can be established afterwards.

Restoring Your Database 8–51

Note

If the CDD_INTEGRATE action fails, the restored database is still
available because the database has been restored successfully,
assuming no restore error messages were received. Only the
metadata was not successfully copied into the data dictionary. You
can correct the problem and then use either the SQL INTEGRATE
DATABASE statement specifying the PATHNAME . . . ALTER
DICTIONARY arguments if the dictionary entity already exists, or
the FILENAME . . . CREATE PATHNAME arguments if the dictionary
entity does not exist. See the Oracle Rdb7 SQL Reference Manual for
more information.

♦

8.13 Using the SQL EXPORT and IMPORT Statements
Use the SQL EXPORT and IMPORT statements to do the following:

• Reorganize an Oracle Rdb multifile database.

• Reorganize an earlier version (pre-V3.0) of an Oracle Rdb single-file
database (or one defined using Oracle Rdb without specifying at least one
SQL CREATE STORAGE AREA clause) into a multifile database with at
least one .rda file.

• Reload an Oracle Rdb database, leaving the storage area definitions the
same but changing the device specifications.

• Make a copy of an Oracle Rdb database for archival purposes.

The SQL EXPORT and IMPORT statements are not intended for regular
backup operations of a database. For regular backup and restore operations
with Oracle Rdb databases, use the RMU Backup and RMU Restore
commands.

For more information on the SQL EXPORT and IMPORT statements, see the
Oracle Rdb7 SQL Reference Manual and the Oracle Rdb7 Guide to Database
Design and Definition.

8–52 Restoring Your Database

9
After-Image Journaling and Recovery

Oracle Rdb provides two types of journaling:

• Before-image journaling, also known as recovery-unit journaling—Records
each data modification before it is committed to the database.

Oracle Rdb creates a recovery-unit journal (.ruj) file automatically for
each process that performs an update transaction. If a user’s transaction
terminates abnormally or if the user invokes an SQL ROLLBACK
statement, Oracle Rdb rolls back the transactions that are logged in the
recovery-unit journal file.

• After-image journaling—Records each data modification after it is
committed to the database.

This optional journaling method requires that you explicitly enable
after-image journaling and add after-image journal (.aij) files for the
purpose of recording after-images of each update transaction committed to
the database. If a failure occurs, Oracle Rdb rolls forward the transactions
that are logged in the after-image journal files.

This chapter describes how to use after-image journaling in conjunction with
regular database backup operations as a method of maintaining data integrity.

9.1 Introduction
After-image journaling protects the integrity of your data by recording all
database transaction activity to an after-image journal (.aij) file. Oracle
Corporation recommends you enable after-image journaling to record your
database transaction activity between full backup operations as part of your
database restore and recovery strategy.

Figure 9–1 shows how you use the transactions recorded in after-image journal
files along with Oracle Rdb backup files to restore a database to a specific point
in time.

After-Image Journaling and Recovery 9–1

Figure 9–1 Restoring Data from the After-Image Journal Files

NU−3611A−RA

Database restored to

Fully recovered
database

previous backup state
After−Image
Journal Files

Because after-image journaling provides a method to roll forward all
transactions since the last backup operation, it is possible to recover an
entire database or just a single database page up to the last successfully
committed transaction.

9.1.1 Recommended and Required Usage
After-image journaling is optional except when you use the FAST COMMIT or
the COMMIT TO JOURNAL optimizations (specified using the SQL ALTER
DATABASE statement). However, Oracle Corporation recommends that you
always enable after-image journaling to record your database transaction
activity. Journaling typically costs 5 to 10 percent in overhead, but provides a
continuous backup of database transactions.

To be effective, you should enable after-image journaling for the entire time
that the database is open and active. Do not sporadically enable and disable
after-image journaling. For example, do not disable after-image journaling
during batch processing, because this leaves gaps in the data modifications
recorded in the journal file and defeats the purpose of using journaling. A
database that does not have after-image journaling enabled is not recoverable.

Recommended Usage
When after-image journaling is enabled, any process that is attached to the
database (including the database recovery (DBR) process) writes to the after-
image journal file. Oracle Corporation recommends that you enable after-image
journaling at all times, but journaling is especially important when:

• You cannot easily apply all transactions to the database that have occurred
since the last full backup operation

• You back up and restore a single database storage area

9–2 After-Image Journaling and Recovery

See Chapter 7 for more information on using backup strategies by storage
area.

Required Usage
You must enable after-image journaling when you use either of these options:

• FAST COMMIT optimization

• COMMIT TO JOURNAL optimization

Your overall database system availability and performance can improve when
your application takes advantage of these performance optimizations along
with after-image journaling.

See Section 9.8 for more information about the fast commit and the commit-to-
journal optimizations.

9.1.2 Information Written to the After-Image Journal File
The information that is journaled includes:

• New or updated data written to the database root (.rdb) file (including new
metadata and metadata changes)

• New or updated data written to storage area (.rda) files

• The following records:

AIJ header
ACE header
Checkpoint
Control (commit or rollback)
Option information
Close
Information
Shuffle
Prepare

Information that is not journaled includes the following modifications that you
make with the SQL ALTER DATABASE statement:

• Changing the number of database users

• Changing the number of cluster nodes

• Reserving journal files

• Suppressing and unsuppressing journal files for multiple fixed-sized journal
files

• Reserving storage area files

After-Image Journaling and Recovery 9–3

• Moving storage areas to different disks

• Moving the database root file to another disk

These changes are not journaled because they are not executed in a read/write
transaction and cannot be rolled back.

9.1.3 Journaling Strategy
As you devise and implement a sound journaling strategy for your database
application, the decisions you make should be based on careful consideration of
the following additional factors:

• Journaling: to use a single extensible journal file versus multiple fixed-size
journal files

• Location of the after-image journal files

• AIJ backup operation:

To automate or semiautomate AIJ backup operations

To back up files prior to each database full backup operation versus
performing journal file backup operations as each backup file becomes
full

To perform noquiet-point AIJ backup or quiet-point AIJ backup
operations

To magnetic tape directly, or first to disk and then to magnetic tape

To back up journal files sequentially as each journal file becomes full,
or backup several journal files simultaneously by specifying unique
journal sequence numbers (using the Sequence qualifier)

• AIJ files: to optimize or not to optimize backup files

• Disk resources: effects of limited disk resources

• WORM areas: to journal or not to journal write-once areas on write-once,
read-many (WORM) media

• Database performance: to optimize database performance, for example,
by enabling fast commit transaction processing versus accepting normal
performance

• Database availability: to require high versus moderate database
availability

• Transaction activity: to support high versus normal or low transaction
activity

9–4 After-Image Journaling and Recovery

• Recovery management: to require less versus more database administrator
(DBA) file management intervention

This chapter addresses many of these considerations.

9.1.4 Displaying After-Image Journaling Performance
To find out what effects after-image journaling has on performance, use the
RMU Show Statistics command to invoke the performance monitor. This
command monitors database disk I/O operations and the number of completed
database transactions.

For a description of the performance monitor and the RMU Show Statistics
command, see the Oracle Rdb7 Guide to Database Performance and Tuning.

9.2 Enabling After-Image Journaling
Use the following SQL statements or Oracle RMU commands to enable
after-image journaling:

• SQL CREATE DATABASE statement

• SQL ALTER DATABASE statement

• RMU Set After_Journal command

• RMU Restore Aij_Options command (if you are restoring a database)

Examples 9–1 and 9–2 provide brief SQL and Oracle RMU examples that
enable after-image journaling using multiple journal files.

After-Image Journaling and Recovery 9–5

Example 9–1 Enabling After-Image Journaling Using SQL Statements

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> RESERVE 4 JOURNALS!
cont> ADD JOURNAL JOURN_1 FILENAME USER4:[JOURNAL]JOURN_1.AIJ"
cont> ALLOCATION IS 1024 BLOCKS#
cont> EXTENT IS 512 BLOCKS$
cont> ADD JOURNAL JOURN_2 FILENAME USER4:[JOURNAL]JOURN_2.AIJ
cont> ALLOCATION IS 1024 BLOCKS
cont> ADD JOURNAL JOURN_3 FILENAME USER4:[JOURNAL]JOURN_3.AIJ
cont> ALLOCATION IS 1024 BLOCKS
cont> JOURNAL IS ENABLED;%
%RDMS-W-DOFULLBCK, full database backup should be done to ensure
future recovery &
cont> EXIT;
$
$ RMU/BACKUP MF_PERSONNEL MFPERS_53196.RBF

! Determine how many journal slots you need and reserve them. By default,
one journal slot is reserved in the database root file.

" Add journal files.

By adding a second journal file, you automatically override the default
journaling method (a single extensible journal file) and invoke multiple
fixed-size journal files. For availability, you should locate journal files on
physical devices separate from the devices holding the database files.

Journal file names must be unique.

To improve performance, allocate an initial amount of disk space to the
after-image journal file. The default value is 512 blocks. (See Section 9.4.3
for information about setting the allocation size.),

$ If you are using a single extensible journal file, specify the size of
after-image journal file extents. The default value is 512 blocks.

Note: The extent value is ignored if you are using fixed-size journal files.
(See Section 9.4.4 for more information on the relationship between file
allocation and extent size for an extensible journal file.)

% After you add all the journal files, enable journaling. You can also enable
journaling using the Enable qualifier on the RMU Set After_Journal
command.

Because reserving journal slots is an operation that is not journaled, a
warning message displays to indicate that you should do a full backup
operation of your database to ensure recovery.

9–6 After-Image Journaling and Recovery

& A warning message displays indicating that a full database backup
operation should be done to ensure future recovery when you reserve
journal slots. When you reserve journal slots to create additional journal
files, this operation is not journaled and therefore requires a full database
backup operation to ensure database consistency.

See Section 9.6 for more information about performing backup operations
on after-image journal files.

Example 9–2 shows how to enable after-image journaling using Oracle RMU
commands on a Digital UNIX system.

Example 9–2 Enabling After-Image Journaling Using RMU

$ rmu -set after_journal \
> -reserve=4 \
> -add=\(name=JOURN_1, file=/usr/journal/journ_1, \allocation=1024) \
> -add=\(name=JOURN_2, file=/usr/journal/journ_2, \allocation=1024) \
> -add=\(name=JOURN_3, file=/usr/journal/journ_3, \allocation=1024) \
> -enable \
> mf_personnel
%RMU-W-DOFULLBCK, full database backup should be done to ensure future
recovery
$
$ rmu -backup mf_personnel mfpers_53196.rbf

Example 9–1 and Example 9–2 provide a starting point for the discussions in
this chapter. Refer to the Oracle Rdb7 SQL Reference Manual and the Oracle
RMU Reference Manual for complete command syntax and usage information,
and for more examples.

OpenVMS
VAX

OpenVMS
Alpha

Note

When you enable after-image journaling on OpenVMS systems, the
journaling operation impacts the size of the global section. After-image
journaling uses up to 1200 additional OpenVMS pages in memory (each
512 bytes) to store AIJ request blocks.

As a process modifies a data record, the after-image of the record is
copied into one or more AIJ request blocks, and then the AIJ request
block is queued for submission into the after-image journal file. Each
AIJ request block is approximately 2000 bytes in length. Thus, to
modify a 3000-byte data record, the journaling operation requires two
AIJ request blocks.

After-Image Journaling and Recovery 9–7

9.3 Disabling After-Image Journaling
You can use SQL statements or Oracle RMU commands to disable after-
image journaling. However, Oracle Corporation recommends that you keep
after-image journaling enabled at all times.

There are some database operations that disable journaling automatically. The
following list describes these operations and the actions taken by Oracle Rdb
in response:

• When you export and subsequently import a database that has after-image
journaling enabled, after-image journaling is automatically disabled.
Therefore, you must manually re-enable after-image journaling after you
import a database.

• If you perform a convert operation (RMU Convert) when after-image
journaling is enabled, Oracle RMU disables after-image journaling during
the database conversion and then reactivates journaling.

• If you perform a convert operation and include the Rollback qualifier on
the RMU Convert command, Oracle RMU disables after-image journaling
and returns the message: RMU-I-CANTENAAIJ. Oracle Corporation
recommends that you enable after-image journaling when the RMU
Convert command and the rollback operation complete.

Refer to the Oracle Rdb7 Installation and Configuration Guide and the
Oracle RMU Reference Manual for complete information about handling
after-image journaling when converting databases.

9.4 The After-Image Journal (.aij) File
When you enable after-image journaling, it saves copies of the modified rows
(plus additional information) to a journal file. The default file type for an
after-image journal file is .aij.

Consider these points as you set up your after-image journal files:

• You should designate that the after-image journal files be written to disk
and the disk should not contain any other database files. You should
restrict the contents of the disk to hold only after-image journal files.
Otherwise, in case of hardware problems, you might not be able to recover
the database.

• On OpenVMS cluster systems, ensure that the after-image journal disk
is accessible from all cluster nodes at all times. Ideally, the after-image
journal disk should be served by multiple controllers.

9–8 After-Image Journaling and Recovery

• You can choose to use either one extensible journal file or multiple
fixed-size after-image journal files.

• You can enhance performance by understanding how the allocation and
extent sizes affect the I/O operational costs.

Sections 9.4.2 through 9.4.4 describe after-image journal file considerations in
more detail.

9.4.1 Location and Accessibility
When after-image journaling is enabled, Oracle Rdb automatically logs all
data modifications (except those mentioned in Section 9.1.2) to the after-
image journal file and to the database file. To maintain high availability and
performance, after-image journal files should always reside on disks that
are separate from the database root (.rdb) file and storage area (.rda) files,
snapshot (.snp) files, and recovery-unit journal (.ruj) files.

If possible, you should also locate each fixed-size journal file on a separate
device. Locating each fixed-size journal file on a separate disk minimizes risks
associated with after-image journal file loss or unavailability should a device
fail or be brought off line. For example, if two or more after-image journal files
reside on the same failed device, the loss of information or its unavailablity is
far greater than that of a single after-image journal file.

Using Logical Names (OpenVMS Only)

OpenVMS
VAX

OpenVMS
Alpha

You can define one or more system logical names to refer to the after-image
journal file. The default directory for the journal file is the same as for the
database files. Include a full file specification to specify each device and
directory.

Do not specify a version number to ensure that the most current version of the
file is used. The file specification can be a system logical name. For example,
the sequence of commands shown in Example 9–3 defines two system logical
names that refer to the device and directory of two after-image journal files.

After-Image Journaling and Recovery 9–9

Example 9–3 Placement of the After-Image Journal File

$ DEFINE/SYSTEM PERS$JOUR1 "DISK1$:[DATABASE.JOURNAL]JOURN_1.AIJ"
$ DEFINE/SYSTEM PERS$JOUR2 "DISK3$:[DATABASE.JOURNAL]JOURN_2.AIJ"
$
$ SQL
SQL> ALTER DATABASE
cont> FILENAME DISK2$:[DEPT3]MF_PERSONNEL
cont> ADD JOURNAL JOURN_1 FILENAME ’PERS$JOUR1’
cont> ALLOCATION IS 1024 BLOCKS;
cont> ADD JOURNAL JOURN_2 FILENAME ’PERS$JOUR2’
cont> ALLOCATION IS 1024 BLOCKS;
SQL> EXIT

♦

Cluster Accessible Disks
You can keep the after-image journal files on public disks or private disks, but,
if your database is configured for access in a cluster, you must ensure that all
after-image journal files are accessible by all nodes in the cluster. Therefore,
you should place the files on dual-pathed disks that are accessible to all nodes
in the cluster. This allows for alternative access paths in the event that one
path fails and ensures that the files are accessible by all nodes in the cluster.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information about placement of Oracle Rdb database files in a cluster
environment.

9.4.2 Extensible and Fixed-Size Journal Files
You can choose to use one or multiple after-image journal files:

• One extensible journal file

When you enable after-image journaling, a single extensible journal file is
created by default. When the journal file’s allocated space is filled, the file
automatically extends itself to accommodate more data.

• Multiple fixed-size journal files

Uses three or more fixed-size journal files, one at a time, in a circular
fashion. When a file’s allocated space is filled, journaling switches to a
second fixed-size journal file until it becomes full, and so forth. The switch
to a new journal file occurs automatically and transparently, as though the
multiple journal files are one seamless journal file. A single transaction
can span one or more journal files.

9–10 After-Image Journaling and Recovery

Oracle Corporation recommends that you use multiple fixed-size after-image
journal files for both single-file and multifile databases. With this method,
after-image journal file management and failure recovery is automatic;
operator intervention is not required under most circumstances.

Note

You must have a minimum of two journal files available (three are
recommended) at all times or the journaling system changes over to
extensible journaling.

When you use multiple fixed-size journal files, all journal files are readily
available on separate disks to provide high availability for the database.

Although the default is to use only one extensible journal file, a single
extensible journal file can impose a number of disadvantages to the
performance and recoverability of your database. Table 9–1 compares the
two methods of after-image journaling.

Table 9–1 Comparison of Single Versus Multiple After-Image Journal Files

Category
Disadvantages of Using
Single Extensible File

Advantages of Using
Multiple Fixed-Size Files

Backup
operations

For applications with high transaction activity,
it may be nearly impossible to back up a journal
file without interrupting database activity. That
is, committed transactions could be written to
the journal file faster than the file can be backed
up, eventually leading to periods of interrupted
database activity while the AIJ backup operation
completes.

High performance AIJ backup capability allows
you to immediately back up journal files, or
automate after-image journal backup operations.
For example, you can write a DCL command
procedure on OpenVMS systems, or enable the
AIJ backup server (ABS) to back up any journal
file as soon as it fills up.

Disk space Because you cannot limit the number of times
the journal file extends itself, it is possible that
without closely monitoring disk space, you can
run out of space on the after-image journal
device for applications that have moderately high
transaction activity.

Journal files fill up and automatically switch over
to the next available journal file. User processes
automatically perform a checkpoint operation
after switching journal files. This avoids the
problem of having a long checkpoint frequency or
a long transaction span all available journal files,
which could lead to a condition similar to running
out of disk space.

(continued on next page)

After-Image Journaling and Recovery 9–11

Table 9–1 (Cont.) Comparison of Single Versus Multiple After-Image Journal Files

Category
Disadvantages of Using
Single Extensible File

Advantages of Using
Multiple Fixed-Size Files

Fast commit
processing

You need twice the disk space to back up the
journal file. The backup operation creates a
second journal file on the same disk as the
existing journal file. You must closely monitor
available disk space to ensure that there is space
for the backup operation to complete. If you
find that there is insufficient disk space during
a backup operation, you may need to close the
database or disable fast commit transaction
processing temporarily to allow the backup
operation to complete.

Provides undo/redo (fast commit transaction
processing) performance without after-image
journal file backup or media recovery concerns.

Recovery After-image journal file management and failure
recovery is considered difficult, labor-intensive,
and time-consuming, and often requires exclusive
database access in order to resolve journal file
management issues.

Automatic recovery from failures occurs when a
journal file becomes unavailable for some reason
(such as a disk device being accidentally shut
down). Because all journal files are available on
disk, you can restore and recover the database,
an area, or a page using only one RMU Restore
command.

Performance If you specify a large value for the SQL EXTENT
IS clause, the application can be stopped for
several minutes while the journal file extends and
is initialized.

Does not require journal file initialization at run
time.

See Section 9.7 that describes after-image journal file switchover in more
detail.

9.4.3 Setting the Allocation Size
You can specify the number of blocks initially allocated to the after-image
journal file when you enable after-image journaling. The allocation setting
controls the physical size of the file created for after-image journaling. The
allocation size also determines the physical end-of-file (PEOF). The default
allocation value is 512 blocks. (See Section 9.2 for SQL and Oracle RMU
examples that show how to set allocation sizes.)

For example, if you set the after-image journal file allocation to 5000 blocks
and set the file extent to 1000 blocks, the file size is set to 5000 blocks (plus or
minus a few blocks if rounding is required).

To determine an appropriate allocation setting, estimate the amount of data
that is written to the after-image journal file in one day. Use the RMU Show
Statistics command to establish an approximation for blocks per transaction

9–12 After-Image Journaling and Recovery

(BPT) and transactions per second (TPS). For example, assuming an 8-hour
workday, calculate the amount of data for one day as follows:

Amount of data = 8 hours � 3600 seconds �BPT � TPS

Set the allocation value to 25 percent higher than one day’s worth of data.
In addition, use the following recommendations for extensible and fixed-size
journal files.

For a Single Extensible Journal File
The allocation size you set for a single extensible journal file depends on
how frequently you back up the journal file. The backup journal file can be
subsequently backed up to tape, reducing the amount of disk space required.

Because performance typically degrades when an after-image journal file
is extended, you should set the initial allocation size to result in the least
possibility for extension. The following table provides guidelines for setting
allocation sizes:

For Databases with . . . Then . . .

High transaction
volumes

Set a larger allocation size to reduce journal file extension and improve
performance significantly.

A large number of
updates and mission-
critical response-time
requirements

Preallocate the journal file to prevent it from being extended during
normal processing. For example, specify an allocation size for the file
that is large enough to handle processing for one day. Then, back up
the after-journal file to tape once a day.

One disk device
dedicated to the after-
image journal file

Choose an allocation size that takes up the entire disk.

Fast commit transaction
processing enabled

Allocate twice the file space on the after-image journal disk if you
have fast commit transaction processing enabled and you plan to back
up the after-image journal file. You need sufficient file space because
the backup process must compress and retain some fraction of the
original after-image journal file or files. This fraction may approach
100 percent of the original size of the journal file. Therefore, be sure
to reserve enough disk space to duplicate the maximum size of the file.
See Section 9.8.1.3 for more information.

See Section 9.4.4 for more information on the relationship between file
allocation and extent sizes.

After-Image Journaling and Recovery 9–13

For Multiple Fixed-Size Journal Files
For multiple fixed-size journal files, specify an allocation size for the after-
image journal file based on the previous math equation that calculates the
amount of data. You can specify a different allocation for each journal file. For
example, file allocation size might differ depending on disk device capacity.

Also, if you enable the AIJ backup server (ABS), each full after-image journal
file is backed up automatically after journaling switches to writing to the next
available journal file.

9.4.4 Setting the Extent Size for an Extensible Journal File
You use the SQL EXTENT IS parameter to specify how many blocks Oracle
Rdb uses to extend the journal file. When you use a single extensible journal
file, you should understand costs involved when you extend the journal file
versus preallocating a large number of blocks for an extensible file.

The after-image journal file extent serves two purposes:

• Controls how many blocks the file extends if it grows beyond the original
allocation size

• Indicates the number of blocks to use for initializing the after-image
journal file, and serves as the logical end-of-file (LEOF)

For example, whenever the LEOF is updated, all the blocks in the new range
are also initialized with –1 values. So, if a file allocation is 5000 blocks and the
file extent is 1000 blocks, on first access the first 1000 blocks are filled with –1
values and the after-image journal file is created as 1000/5001. The LEOF is
1000, the PEOF is 5001, and blocks 1 to 1000 are filled with –1 values. Once
the after-image journal file fills up to virtual block number (VBN) 1000, the
LEOF is extended to 2000 blocks, and blocks 1001 to 2000 are filled with –1
values.

The following sections provide information to help you understand journal file
initialization and locking, and how to set the SQL EXTENT IS parameter to
reduce the number and size of after-image journal file extensions.

Estimating Cost Factors
A process needs to determine the location of the logical end-of-file. To do this,
each user process holds a special lock, called the after-image journal lock. The
lock-value block maintains information regarding the location of the end of the
after-image journal file. If the lock-value block does not have information, the
lock-value block is rebuilt.

9–14 After-Image Journaling and Recovery

To estimate the cost of rebuilding the after-image journal lock and extending
the size of the journal file, use the following calculations:

• Rebuilding the after-image journal lock

To estimate the cost of rebuilding the after-image journal lock, use the
following formula to find the number of I/O operations required to establish
the logical end-of-file (LEOF) pointer:

(ln AIJ size=ln 2) + number of nodes) =

Number of I=O operations to establish the LEOF

The notation ‘‘ln’’ refers to the natural log scientific notation.

For example, for a database with 16 nodes and an extent size set to 1000
blocks, the number of I/O operations needed to find the end of file is
calculated as follows:

LEOF = (ln 1000=ln 2) + 16 = 26

• Extending the extensible after-image journal file

In general, you can improve performance by increasing the number of
blocks for file allocation to reduce the number of times that Oracle Rdb
must extend an extensible journal file. This is particularly true for
applications with high transaction volumes. The larger the extent size,
the longer it takes Oracle Rdb to rebuild the lock.

An after-image journal file extends at the rate of approximately 2000 blocks
(512 bytes) per second (1Mb per second). While the file is extending, the
database is stalled such that transactions are not allowed to commit or roll
back.

For example, assume that a journal file has been allocated with 100,000
blocks and that about 2000 blocks can be initialized per second. The
following table provides examples to demonstrate how the extent size
affects the amount of time it takes to fill the extent section of a 100,000
block file.

If the extent size is
. . . Then . . .

100,000 blocks The 50-second cost is incurred all at one time.

After-Image Journaling and Recovery 9–15

If the extent size is
. . . Then . . .

10,000 blocks The after-image journal file is extended 10 times, but each extent and
initialization takes about 5 seconds.

You need to evaluate these cost estimates to determine how to incur this
I/O operational expense with the least effect to your business applications.
For example, you must decide if it is less disruptive to have the first user
wait 1 second to rebuild the after-image journal lock (based on an extent
size of 100,000 blocks). Compare this to the expected disruption of 0.1
seconds each time the file is extended (based on the smaller extent size).

As another example, consider the following options and analysis for allocating
and initializing a 200,000-block after-image journal file:

• You can specify an extent size of 200,000 blocks.

The drawback to this method is that the first user process to attach to
the database stalls for some time and all transactions are prevented from
writing to the after-image journal file while the file is initialized. You can
work around this problem by opening the database on a node so you can
avoid the lock rebuild of the first user. In addition, lock rebuilds are slow.
However, if you specify a large extent size, you need to rebuild an AIJ lock
only when a process holding the lock aborts.

• You can specify an extent size of 10,000 blocks.

This means the file is extended 20 times for a 200,000-block allocation and
should not produce a significant stall. Furthermore, lock rebuilds proceed
much faster.

9.5 Journaling List (WORM) Data
Because list data stored in write-once storage areas on write-once read-many
(WORM) optical media usually consists of large objects resulting in large after
images when journaling is enabled, you should consider carefully whether or
not you need to journal WORM list data.

For example, if many lists are stored, such as during large data-load
operations, it could result in:

• Large after-images quickly filling a journal file. Thus, you must carefully
plan disk and tape resources. (When after-image journaling is enabled,
journal files are written to a disk device and after-image journal file backup
operations written to tape media.)

9–16 After-Image Journaling and Recovery

• Less than optimal performance for insert and update operations.

The decision to journal list data on WORM media is based on your application,
your recovery strategy in the event of a WORM media failure, the volume of
list data to be stored, the cost of managing and maintaining a journal file,
performance considerations, and finally weighing alternative strategies.

You should select a strategy that works best for your application, given the
risks, and that ensures the desired outcome should you experience a WORM
media failure.

The following discussions take several factors into consideration and weigh
them against a variety of best-case to worst-case scenarios to determine the
risk factors for temporary and permanent loss of data, loss of space on WORM
media, and the costs associated with these potential losses.

Reloading Instead of Journaling
In most cases, databases on WORM devices that include stable, read-only
data do not require that you use after-image journaling. Such list data
may be updated monthly, quarterly, or annually and can be done as a data-
load or a by-area restore operation. Because this is essentially a batch load
operation, journaling these transactions is unnecessary if the load operation is
immediately followed by a database backup operation.

In this case, do not journal the data-load operation. Recovery from media loss
involves media replacement with list data being reloaded through a data-load
or a restore operation. The benefit of this strategy is that you do not need to
perform backup, restore, or recover operations of list data on WORM media. To
use this strategy, exclude the write-once area on the WORM media from your
backup operations by including the Exclude=storage-area-name qualifier on the
RMU Backup command.

To disable journaling for a write-once storage area on WORM media, use
the WRITE ONCE (JOURNAL IS DISABLED) clause of the SQL CREATE
DATABASE or SQL ALTER DATABASE statement.

Performing Backup Operations Only
Consider the case of a write-once area on WORM media that is backed up on a
regular basis but is not being journaled.

If there is WORM media failure, the information in the most recent backup
file is restored to new WORM media. However, because there is no after-
image journal file, all information written since the time of the last backup
operation is unrecoverable. In this case, the information is lost and the area is
inconsistent.

After-Image Journaling and Recovery 9–17

To work around this problem, you must use the Worm_Segments qualifier
with the RMU Repair command to set columns to null if the columns contain
damaged or missing list segments. Performing a repair operation prevents
the database from raising exceptions and closing down if there is a fetch of
information from any of the missing pages in the area.

If you disable journaling for write-once areas on WORM media, you should
understand the consequences of WORM media failures and take all precautions
to prevent data loss under all circumstances.

One possible alternative is to mirror or shadow the database root file and the
WORM media. This option is based on the assumption that it is important
to have list data accessible and available at all times. This approach does
not require that either the database root file or list data ever be restored or
recovered.

Performing After-Image Journaling Only
At the other end of the spectrum are applications that continually insert and
update list data on WORM media. A strategy to journal all committed list
data transactions requires that you plan accordingly. The insert and update
performance with this strategy may be less than optimal.

For example, you must ensure that journal files are always available and
when a file becomes full you must back it up immediately so the journal file
becomes available again. To maintain data consistency, it is essential that you
include the WORM media as a part of your routine during backup, restore, and
recovery procedures.

Furthermore, recovering from lost WORM media requires that you restore and
recover the information to another WORM media if the original media cannot
be placed back on line. Because you cannot write over what is already written
on WORM media, allocate sufficient space so that you can restore and recover
the list data.

In addition, if the database root file needs to be restored due to a disk
failure, you are likely to waste additional space on WORM media even
though information on the WORM media is unaffected. This is because any
preallocated unused space in the write-once storage area space between the
highest page number to the end of the file allocation or extent is lost after you
restore and recover the database root file and preallocate more storage space.
On average, the loss of space is usually half the extent size.

9–18 After-Image Journaling and Recovery

9.6 Backing Up After-image Journal Files
After-image journaling is completely integrated with the Oracle RMU backup
operation to enable the database to be restored to a specific point. The
database backup operation contains all changes to pages, and the after-image
journal backup file contains all changes to rows and index records that have
occurred since the last backup operation. Thus, all update transactions that
were active when the backup operation started or that began after the backup
operation started must be recovered from a backup copy of the after-image
journal file.

Use either of the following backup methods to record the contents of the
after-image journal file to a journal backup file that can be used to recover a
database:

• Automatically using the AIJ Backup Server (ABS)

• Manually using the RMU Backup After_Journal command

You should perform backup operations during quiet points (by using the Quiet_
Point qualifier) to maintain a transaction-consistent view of the database.

Note

Do not use other backup utilities such as the OpenVMS Backup
(BACKUP) utility or the Digital UNIX tar function to back up and
restore Oracle Rdb databases or after-image journal files. Relying on
backup utilities other than Oracle RMU can compromise the reliability
and availability of the database. See Section 7.4 for more information.

The following sections describe after-image journal backup operations.

9.6.1 Backup and Recovery Strategy
When devising an after-image journal file backup strategy, consider the
following options for recording and recovering database changes:

• You can accumulate multiple after-image journal files (the current journal
file plus all backed-up journal files).

• You can perform on regular incremental backup operations of the database
between full backup operations.

After-Image Journaling and Recovery 9–19

The best strategy depends on the time between full backup operations
compared to the time and effort to restore the database. The longer the
time between full backup operations, the greater the advantage of using the
incremental backup operation to keep a record of database changes. If you
perform a full backup operation every few days, you might benefit most by
creating one or more after-image journal files, especially if the files are not too
large.

For example, consider a scenario in which you accumulate 2 weeks’ worth of
daily after-image journal files since your last full backup operation. You must
restore the entire database and recover each of the 14 journal files in proper
sequence, one at a time, to bring your database to its most current state.

This procedure may take much longer to accomplish than restoring the full
backup file and incrementally restoring the latest incremental backup file
to bring the database to its most current state. This is because each night’s
incremental backup operation accumulates each successive day’s changes into
just one incremental backup file.

9.6.2 Disk and Tape Backup Media
The RMU Backup After_Journal command provides a two-stage journaling
process that can save disk space and reduce the dependence on tape drives.
The RMU Backup After_Journal command copies completed transactions
recorded in the primary journal file (always on a disk device) to the backup file
(which may be on a tape device or disk device). Oracle Rdb recommends you
back up journal files to disk, then perform another backup operation to back
up these files (from the backup disk) to tape.

Note

Do not back up large extensible journal files directly to tape.

You can back up the after-image journal file on line, while users are attached
to the database. You can back up your journal file either all at once or
continuously.

By default, the RMU Backup After_Journal command backs up the entire
contents of your journal file to tape. If there are no after-image records in your
journal file, Oracle RMU returns the following error message:

%RMU-I-EMPTYAIJ, after-image journal file is empty

If your backup operation results in a large number of backup tapes, consider
purchasing software such as a storage library system or archive backup system
to manage the tapes.

9–20 After-Image Journaling and Recovery

9.6.3 Reusing Disk and Tape Backup Media
To determine when you can reuse after-image backup media, follow this
procedure:

1. Dump the database root file information and the after-image journal file
information using the RMU Dump Header command.

2. Examine the dump header output for the following information:

• Transaction sequence numbers

Find the after-image journal sequence number in the after-image
journal file dump output and compare it with the after-image journal
sequence number in the database root file. For example:

$ rmu -dump -after_journal mfpers.aij
.
.
.

AIJ Sequence Number is 0
.
.
.

$ rmu -dump -header mf_personnel
.
.
.

AIJ Sequence Number is 1

• Inconsistent storage areas. For example:

Storage area EMP_INFO
.
.
.

Status...
- Area is marked inconsistent

Consistent to TSN 75
Roll-forward sequence number is 0

3. Reuse the backup media according to the guidelines in the following table:

If There Are . . . Then Reuse the Backup Media . . .

No inconsistent
storage areas

If the sequence number of the after-image journal file is less than the
sequence number stored in the database root file.

Inconsistent storage
areas

If the sequence number of the after-image journal file is less than the
sequence number stored in the storage areas.

After-Image Journaling and Recovery 9–21

9.6.4 Scheduling
For an extensible journal file, you must change your journal file:

• Before the database full backup operation

You must enable after-image journal file backup operations before the
full backup operation to ensure a recoverable database. If you need to
recover your database, rollforward operations commence with the active
after-image journal file, thus increasing the speed with which rollforward
operations complete.

• When there is a lack of available resources

This is particularly important if you use an extensible journal. If your
extensible journal file becomes low on disk space, perform an after-
image journal file backup operation. The backup operation truncates the
extensible journal file to its initial allocation, thus making additional disk
space available. If you continue to have space problems on the disk where
the journal file resides, consider moving the journal file to another disk.

For fixed-size journal files, all journal files (except for the current active journal
file) should be backed up. When the backup operation starts, a switch to the
next available journal file occurs automatically. Journaling operations continue
on a new journal file so that backup operations can proceed on the now
unavailable journal file. Section 9.6.5 provides information about switching
journal files manually.

Note

Always perform the database backup operation on line to allow
database activity to continue during the backup procedure.

9.6.5 Transaction Sequence Numbers (TSN)
Because the purpose of performing after-image journal file backup operations
is so you can recover all update transactions in the event of a failure, the
backup operation must record all transactions that are active when the backup
operation starts or that begin after the backup operation starts.

Oracle Rdb uses transaction sequence numbers to ensure the correct
recovery of all transactions. Because you back up the journal file before
the database backup operation begins, consider the possibility of having the
same transaction recorded in both the after-image journal backup file and the
database backup file, as shown in Figure 9–2:

9–22 After-Image Journaling and Recovery

Figure 9–2 When to Back Up the After-Image Journal File

Time

ZK−1002A−GE

Backup

EndStart
TransactionTransaction T2

No Quiet−Point
Online Backup StartsAIJ1 AIJ2 AIJ3

Start Long
Transaction T1

End
Transaction

Database Backup
No Quiet−Point
Online Command
Issued

AIJ No
Quiet−Point

Oracle Rdb can handle these situations because it assigns a transaction
sequence number (TSN) to each transaction as it is committed. When Oracle
RMU performs a database backup operation, it saves the last recorded TSN in
the database root file. Then, if you need to restore the database, the database
root file is updated with the last or highest committed TSN for the database.

When you recover a journal file, Oracle Rdb compares the highest committed
TSN in the database root file with the TSN written in the open record of the
journal file. If the TSN values are the same, the recovery operation proceeds.
Thus, the backup, restore, and recovery operations take the correct action
based on comparisons of TSN values. For example:

After-Image Journaling and Recovery 9–23

If . . . Then . . .

You perform a quiet-
point after-image
journal file backup
operation and a
quiet-point database
backup operation

The backup operations proceed only when there are no active transactions.
In Figure 9–2, the backup operation does not start until after transaction
T1 completes. The restore operation returns informational messages
that indicate recovery must start with the TSN numbers written to the
AIJ3.AIJ file (shown in Figure 9–2).

For fixed-size journal files, you can use the Switch_Journal qualifier with
the RMU Set After_Journal command to manually switch the current
journal file to another available empty journal file before backing up
the database and journal files. By manually switching journal files, you
eliminate the need for the recovery operation to examine transactions that
have already committed before the backup operation starts if you must
later restore and recover the database.

You perform a
noquiet-point after-
image journal file
backup operation
and a noquiet-point
database backup
operation

The backup operation determines which transaction you must recover first
and a restore operation returns informational messages to indicate that
recovery must start with the after-image journal sequence number that
represents the oldest active write transaction. For example, because of
the long running transaction in Figure 9–2, a restore operation requires
the AIJ1 journal file (transaction T1) is recovered first to start recovery
after the database restore operation.

When you use multiple fixed-size files, a journal file switchover can occur
at any time and Oracle Rdb handles the switchover correctly. In most
cases, there is no benefit to manually switching journal files because
active transactions span journal files. Performing a journal file switchover
results in the active transactions spanning an additional journal file.
Thus, performing a journal file switchover on a partially full journal
requires that you recover an extra journal file if you must restore and
recover your database. See Section 9.6.8.1 for more information.

Note

Do not use the Overwrite qualifier (on the RMU Set After_Journal
command) to perform write I/O operations to journal files before you
back up those files. Oracle Corporation does not recommend writing
over journal files because it makes the database nonrecoverable. Use
the Overwrite qualifier only for databases that you can reconstruct
without using journal files.

9–24 After-Image Journaling and Recovery

9.6.6 Backup Termination or Failure
When an after-image journal file backup operation terminates prematurely, the
database root file is initialized to reflect the termination. If this happens, you
must rerun the after-image journal file backup utility to completion.

Note

Do not discard the backup file produced by the failed after-image
journal file backup operation. Discarding the file might lose
information required to recover the database.

9.6.7 Backing Up a Single Extensible Journal File
You can back up your extensible journal file either all at once or continuously.
By default, the RMU Backup After_Journal command backs up the entire
contents of your journal file to tape. However, if the journal file is large, Oracle
Corporation recommends that you back up directly to disk.

If you are using an extensible journaling system, you should carefully monitor
the size of the journal file, particularly during periods of heavy use. When the
size of the extensible file exceeds the disk space allocation, all database activity
can stop.

See the Oracle RMU Reference Manual for information about using the RMU
Backup After_Journal command to back up extensible journal files.

9.6.8 Backing Up Multiple Fixed-Size Journal Files
From a management perspective, once you set up a fixed-size journaling
system, there is little operator intervention required. When you use multiple,
fixed-size journal files, after-image journaling automatically switches to the
next available journal file when the current after-image journal file becomes
full.

OpenVMS
VAX

OpenVMS
Alpha

(You can be notified of this event automatically by setting the notification state.
Use the Notify qualifier on the RMU Set After_Journal command.)♦

The backup process requires minimal operator intervention because the
database root file maintains these after-image journal sequence numbers:

• A backup sequence number (the sequence number of the next after-image
journal file to be created)

• A recovery sequence number (the sequence number of the next journal file
to be recovered)

After-Image Journaling and Recovery 9–25

Using these two after-image journal sequence numbers, the database root file
structures manage the journaling system and recovery of the entire set of
journal files.

9.6.8.1 Automatic and Manual Backup Operations
As soon as the full journal file is off line, you can back up the journal file to
tape media manually (using the RMU Backup After command) or enable the
ABS process to back up journal files automatically.

Automatic journal file backup operations are advantageous because Oracle
RMU performs the backup operation without requiring human intervention.
The backup operation must write to a disk-based backup file. Ideally, each
backed-up journal file is located on a separate disk from all other database
files. If you cannot provide a disk for each journal file, minimally, you should
locate journal backup files only on disks with sufficient space.

Note

Although the ABS process can perform a backup operation to a file
across a network (include a node name in the backup file specification),
it is probably faster to back up the file to a local disk and then copy the
disk to the remote site.

Manual journal file backup operations are advantageous because, when given
sufficient disk resources, you can perform after-image journal file backup
operations on the complete set of journal files just prior to the database backup
operation.

After a journal file is backed up, you can copy the backup file to tape using the
OpenVMS BACKUP command or the Digital UNIX tar function. Then, delete
the backed-up journal file from the disk to make the disk space available for
more after-image journal backup operations. Also, you can perform after-image
journal backup operations manually to tape devices.

For example, assume that you want to use three after-image journal files,
an automatic backup server (ABS), an automatic AIJ log server (ALS), and
you enabled AIJ notification. The following examples show how to use SQL
statements to specify these options and display the results:

SQL> -- Specify the journal backup file name
SQL> -- for the first journal.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ALTER JOURNAL JOURN_1
cont> BACKUP FILENAME DISK21$:[JOURNAL]BKUPJOURN_1;!
SQL> -- Reserve four journals.

9–26 After-Image Journaling and Recovery

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> RESERVE 4 JOURNALS;
SQL> -- Add two more journals, allocations, and backup file names.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD JOURNAL JOURN_2 FILENAME DISK12$:[JOURNAL]JOURN_2"
cont> ALLOCATION 1024 BLOCKS
cont> BACKUP FILENAME DISK22$:[JOURNAL]BKUPJOURN_2
cont> ADD JOURNAL JOURN_3 FILENAME DISK13$:[JOURNAL]JOURN_3"
cont> ALLOCATION 1024 BLOCKS
cont> BACKUP FILENAME DISK23$:[JOURNAL]BKUPJOURN_3;
SQL> -- Enable the backup server as automatic.
SQL> -- Enable notification.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> JOURNAL IS ENABLED
cont> (BACKUP SERVER IS AUTOMATIC,#
cont> NOTIFY IS ENABLED); $
SQL> -- Show the current parameters for the journals.
SQL> SHOW JOURNALS *
Journals in database with filename mf_personnel

JOURN_1
AIJ File Allocation: 1024
AIJ File Extent: 512
Journal File: DISK11$:[JOURNAL]JOURN_1.AIJ;1
Backup filename: DISK21$:[JOURNAL]BKUPJOURN_1.AIJ;1

JOURN_2
AIJ File Allocation: 1024
Journal File: DISK12$:[JOURNAL]JOURN_2.AIJ;1
Backup filename: DISK22$:[JOURNAL]BKUPJOURN_2.AIJ;1

JOURN_3
AIJ File Allocation: 1024
Journal File: DISK13$:[JOURNAL]JOURN_3.AIJ;1
Backup filename: DISK23$:[JOURNAL]BKUPJOURN_3.AIJ;1

After-Image Journaling and Recovery 9–27

SQL> SHOW DATABASE RDB$DBHANDLE%
.
.
.

AIJ File Allocation: 1024
AIJ File Extent: 512

.

.

.
Journal is Enabled
Journal File: JOURN_1
Backup Server: Automatic
Log Server: Manual
Overwrite: Disabled
Notification: Enabled

.

.

.
Journals in database with filename mf_personnel

JOURN_1
JOURN_2
JOURN_3

! Check that your original journal file has a backup journal file name; if not,
add one using the SQL ALTER DATABASE ALTER JOURNAL statement.

" Add two additional journal files on separate disk drives

Specify the ABS process as automatic.

$ Enable after-image journal file notification.

% Display the results of your changes.

Each time there is a journal file switchover, the operator is notified and an
automatic backup operation of the full journal file occurs. For example, a
display of the header information shows you the current status of journaling
for each journal file after a switchover occurs.

AIJ Journaling...
- After-image journaling is enabled
- Database is configured for 5 journals
- Reserved journal count is 5
- Available journal count is 3

9–28 After-Image Journaling and Recovery

- Journal switches to next available when full
- 1 journal has been modified
- 2 journals can be created while database is active
- Journal "JOURN_2" is current !
- All journals are accessible
- WARNING: Non-journalled database modifications have been made "

- Recovery (roll-forward) may not be possible
- Full database backup is required

- Shutdown time is 60 minutes
- Backup Spooler is enabled
- Log server startup is MANUAL
- Operator notification is enabled for the following operators

- Central
- Journal overwrite is disabled
- AIJ Cache on Electronic disk is disabled
- Default AIJ journal allocation is 512 blocks
- Default AIJ journal extension is 512 blocks
- Default AIJ journal initialization is 512 blocks
- Current roll-forward sequence number is 1
- Current backup sequence number is 1
- Database backup has not been done

- Journaling was either enabled or new journals reserved
- Full database backup is recommended

- Last Journal backed up was "JOURN_1" #

- Backup sequence number was 0 $
- Next journal to be backed up is "JOURN_2" %

- Backup sequence number is 1 &
- AIJ Journal "JOURN_1" '

- Filename is DISK11$:[JOURNAL]JOURN_1.AIJ;2
.
.
.

- AIJ Journal "JOURN_2"
.
.
.

! JOURN_2 is the current journal file.

" A Warning message instructs you to perform a full database backup
operation because the database is not recoverable currently.

JOURN_1 is backed up.

$ The JOURN_1 backup sequence number was 0.

% The next journal file to be backed up is JOURN_2.

& JOURN_2 has backup sequence number 1.

After-Image Journaling and Recovery 9–29

' The display continues, providing complete information about JOURN_1
and all other journal files.

As shown in callout !, reserving journal files is not a journaled event so you
must back up the database to ensure that it can be recovered. To immediately
back up the current journal file, you can manually switch journal files using
the Switch_Journal qualifier on the RMU Set After_Journal command, and
then performing a quiet-point backup operation on the full journal file. The
following code example shows how to perform these operations:

$ RMU/SET AFTER_JOURNAL /SWITCH_JOURNAL MF_PERSONNEL
$ RMU/BACKUP MF_PERSONNEL MFPERS_101293

A display of the header information, as shown in the following examples,
indicates more current status for journaling and the journal files:

.

.

.
AIJ Journaling...

- After-image journaling is enabled
- Database is configured for 5 journals
- Reserved journal count is 5
- Available journal count is 3
- Journal switches to next available when full
- 1 journal has been modified
- 2 journals can be created while database is active
- Journal "JOURN_1" is current !

.

.

.

- Current backup sequence number is 2
- Database backup AIJ sequence number is 2
- Last Journal backed up was "JOURN_2" "

- Backup sequence number was 1 #
- Next journal to be backed up is "JOURN_1"

- Backup sequence number is 2 $
- AIJ Journal "JOURN_1"

- Filename is DISK11$:[JOURNAL]JOURN_1.AIJ;2
- Default AIJ filename is "JOURN_1"
- Journal is current
- Backup sequence number is 2 $

.

.

.

9–30 After-Image Journaling and Recovery

The warning message about not being able to recover your database because of
unrecoverable changes is gone.

! JOURN_1 is the current journal file.

" JOURN_2 was the last journal file to be backed up.

JOURN_2 has a backup sequence number of 1.

$ JOURN_1 has a backup sequence number of 2.

9.6.8.2 File Management
As you devise a backup strategy, you need to determine the following:

• How often you want to schedule full database backup operations

• How many journal files you usually accumulate between full backup
operations

If you are planning database backup operations on a regular basis, for example,
once a week, and estimate that you will be filling and backing up journal files
twice a day, you could use a manual backup method (such as a DCL command
procedure) to keep track of the journal backup files that contain information
and the duration of time covered by each backup file.

To do this, use the Edit_Filename=(Options) qualifier with the RMU Backup
After_Journal command to specify that a date, time, and other values be
applied to the file name to make it more meaningful and to make the
management of the files easier.

For example, by specifying the following options, Oracle RMU supplies the
date, time, and journal sequence number of each backed up journal file. The
advantage of this file-naming approach is easier recovery management because
you must know in what order to apply the backed up journal files after you
restore your database.

$ RMU/BACKUP/AFTER_JOURNAL -
_$ /EDIT_FILENAME=("_",MONTH,DAY_OF_MONTH,YEAR,"_",HOUR,MINUTE,"_",SEQUENCE) -
_$ DISK21$:[JOURNAL]JOURN_1

A directory of DISK21$: that contains the JOURN_1 journal backup file
displays a more meaningful file name. The SEQUENCE value tells you
the backup sequence number of the journal backup file which is essential
information for recovery purposes.

JOURN_1_10121996_1913_8.AIJ;1

After-Image Journaling and Recovery 9–31

Depending on how frequently the after-image journal file switchover occurs,
you may want to perform an OpenVMS BACKUP operation or Digital UNIX
tar function to tape on a regular basis for each disk containing a journal
backup file.

You could write a procedure to further automate this process if you had a
tape drive dedicated solely for this purpose. For example, the procedure could
look for new file names on the disk during different periods of the day. Some
operator intervention may be required to respond to prompts.

You could perform backup operations either manually or automatically with
a user-written procedure. Backup operations cannot be automated with the
after-image journal backup server (ABS) because the ABS process records only
the backup file name that you specify for each journal file.

9.6.9 Writing a Customized Backup Procedure
You might want to create a procedure that determines when journal files
switch and performs a semiautomatic after-image journal backup operation.

OpenVMS
VAX

OpenVMS
Alpha

For example, Example 9–4 is a sample DCL procedure that detects when the
after-image journal file switchover occurs, and then automatically backs up the
full journal file.

Example 9–4 uses the following global process symbols to help automate the
after-image journal backup operation:

RDM$AIJ_SEQNO—Sequence number of the last journal backup file
written to tape.

RDM$AIJ_CURRENT_SEQNO—Sequence number of the currently active
journal file. A value of –1 indicates that after-image journaling is disabled.

RDM$AIJ_NEXT_SEQNO—Sequence number of the next journal file that
needs to be backed up.

RDM$AIJ_LAST_SEQNO—Sequence number of the last journal file that
needed to be backed up. A value of –1 indicates that no journal file has
ever been backed up.

RDM$AIJ_BACKUP_SEQNO—Sequence number of the last journal file
backed up by the backup operation. A value of –1 indicates that this
process has not yet backed up a after-image journal file.

RDM$AIJ_COUNT—Number of available after-image journal files.

9–32 After-Image Journaling and Recovery

Example 9–4 Automated Custom Backup Procedure

$!++
$! User-written Backup Server command script for Oracle Rdb on OpenVMS
$!
$! If no parameters are supplied, questions are asked:
$! P1 = Database rootfile specification.
$! P2 = AIJ backup filename specification.
$! P3 = Termination date/time
$!--
$!
$ on ERROR then goto exit_backup
$ on WARNING then goto exit_backup
$ on CONTROL_C then goto exit_backup
$ on CONTROL_Y then goto exit_backup
$!
$! Get the database name
$!
$ if p1 .eqs. "" then inquire p1 "_database"
$ DB_NAME = "’’p1’"
$!
$! Get the backup filename
$!
$ if p2 .eqs. "" then inquire p2 "_backup"
$ BACKUP_NAME = "’’p2’"
$!
$! Get the termination date/time
$!
$ if p3 .eqs. "" then inquire p3 "_until"
$ UNTIL_TAD = "’’p3’"
$ UNTIL_DATE = f$cvtime(UNTIL_TAD)
$!
$! Get the initial backup context information. This initializes 4 interesting
$! process-global symbols:
$! RDM$AIJ_COUNT - Number of available AIJ journals
$! RDM$AIJ_CURRENT_SEQNO - Sequence# of currently active AIJ journal
$! RDM$AIJ_NEXT_SEQNO - Sequence# of next AIJ journal needing backup
$! RDM$AIJ_LAST_SEQNO - Sequence# of last AIJ journal needing backup
$!
$ RMU /SHOW AFTER_JOURNAL /BACKUP_CONTEXT /OUT=NL: ’DB_NAME

$!
$! Make sure multiple AIJ Journals exist.
$!
$ if RDM$AIJ_COUNT .eq. 1
$ then
$ rmu /backup /after_journal /quiet /log -
/continuous /until="’’UNTIL_TAD’" /interval=60 -
’DB_NAME ’BACKUP_NAME
$ goto exit_backup
$ endif

(continued on next page)

After-Image Journaling and Recovery 9–33

Example 9–4 (Cont.) Automated Custom Backup Procedure

$!
$!
$! Are there any journals ready to be backed up?
$!
$ continue_backup:
$ sho symbol RDM$AIJ*
$!
$! Check the termination date/time
$!
$ CUR_DATE = f$time()
$ CUR_DATE = f$cvtime(CUR_DATE)
$ if CUR_DATE .gts. UNTIL_DATE then goto exit_backup
$!
$! Make sure after-image journaling is enabled. Do this inside the backup loop
$! in case after-image journaling is disabled while this script is executing.
$!
$ if RDM$AIJ_CURRENT_SEQNO .eq. -1
$ then
$ write sys$output "AIJ journaling for database ’’DB_NAME’ is disabled"
$ goto exit_backup
$ endif
$!
$! Is there an AIJ journal ready for backup?
$!
$ if RDM$AIJ_NEXT_SEQNO .le. RDM$AIJ_LAST_SEQNO
$ then
$ RMU /BACKUP /AFTER_JOURNAL /LOG -
/sequence=(’RDM$AIJ_NEXT_SEQNO, ’RDM$AIJ_LAST_SEQNO) /wait -
’DB_NAME ’BACKUP_NAME
$ endif
$!
$! Wait for 1 minute before updating our backup context again
$!
$ wait 00:01:00.00
$ rmu /show after_journal /backup_context /out=nl: ’DB_NAME
$ goto continue_backup
$!
$ exit_backup:
$ verify = f$verify(verify)
$ exit

♦

9–34 After-Image Journaling and Recovery

9.7 Journal Switchover
Journal file switchover occurs when journaling switches from logging
database modifications in a (full) journal file to a new (empty) fixed-size journal
file.

Typically, after-image journal file switchover occurs because the current journal
file is full. As a journal file fills with modifications, logging automatically
switches to unmodified journal files so that the I/O operations continue logging
journal records. Journal file switchover also occurs for other reasons, such as
when you manually switch journal files or if there is a hardware failure.

Switching journal files usually occurs transparently to database users and
applications. As journal files fill up and successfully switch over to the next
unmodified journal file, checkpointing occurs automatically for each database
user. The purpose of performing a checkpoint operation is to save the status
each time switchover occurs and to:

• Avoid a long interval of time between checkpoints

• Prevent a long transaction from spanning several journal files

Either of these situations could lead to a condition similar to running out of
disk space.

During a journal file switchover, transaction processing can continue without
interruption as long as there are sufficient unmodified journal files and journal
slots available. New, unmodified after-image journal files become available
when one of the following events occurs:

• A modified journal file is backed up, thus becoming available for journaling
again

• A new after-image journal file is added

However, if extra, unmodified journal files are unavailable, Oracle Rdb
suspends all journal file processing until an unmodified journal file becomes
available. it is a serious situation when journaling suspends because the
journal file switchover cannot occur, but it is completely avoidable if you follow
the recommendations in Section 9.7.2.

After-Image Journaling and Recovery 9–35

9.7.1 Reasons Why After-Image Journal File Switchover Suspends
Although there are a number of mechanisms to help you ensure that after-
image journaling never suspends, it is possible for suspension to occur for the
following reasons:

• The complete set of after-image journal files is unavailable when an
additional journal file is needed

• The after-image journal file backup strategy is inappropriate for your
journaling system

• The after-image journal file allocation size is inadequate

When transactions are waiting to commit and all database modification
information needs to be written to a journal file, Oracle Rdb suspends all
after-image journaling activities until a new journal file is available. Database
activity must not continue until a journal file is available because all database
modifications are required for future after-image rollforward operations.

Warning

Once after-image journal file switchover is suspended, any process
failure, including failures caused by explicitly entering a command to
stop the process initiates an immediate database shutdown. Database
shutdown is necessary because the database recovery process (DBR)
cannot write either the pending after-image journal file data or the
transaction rollback record to the after-image journal file. Once the
database is frozen, no database locking operations are allowed. This is
known as a deadlock on after-image journal file switchover.

Any database operation (such as the RMU Backup command or the
RMU Backup After_Journal command) can cause the database to
shut down if the backup operation is aborted. Avoid aborting backup
operations to minimize the possibility of database shutdown.

9.7.2 Avoiding Journal File Switchover Suspension
You must implement journal file switchover carefully to ensure that there are
an adequate number of journal files and reserved journal slots available.

Use the following strategies to plan for contingencies and unexpected events,
and avoid suspended after-image journaling operations:

9–36 After-Image Journaling and Recovery

Reserve at Least One Unused After-Image Journal Slot
Reserve sufficient journal slots to allow for after-image journaling as well as
after-image journal file backup operations. Always have at least one unused
journal slot and more if you have enough disk space (each slot requires two
blocks in the database root file). Reserving a journal slot does not create an
after-image journal file.

If you run out of reserved journal slots, you cannot add more slots while the
database is on line and active. Increasing the number of reserved journal slots
requires that you take the database off line.

Note

If a process is stalled because it is waiting for more journal files to
be added, you cannot increase the number of journal slots even if the
database is off line.

Consider reserving one or two extra disks and extra journal slots for failure
recovery. In case a journaling disk goes down, you can easily add another
journal file in an online operation as long as there are extra slots and a disk
available.

Add a Minimum of Three After-Image Journal Files
Plan ahead to correctly estimate the number of journal files required for the
database activity typical for your application. Oracle Corporation recommends
that you add a minimum of three journal files.

If you fill all available unmodified journal files and have no more reserved
journal files, and you cannot add another journal file to allow journal file
switchover, after-image journaling operations suspend after 60 minutes (the
default).

Specify the Appropriate Allocation Size for the After-Image Journal Files
Proper sizing of the after-image journal files is extremely important to the
overall smooth operation of the application. Care should be taken when the
application transactions are large or when high-transaction throughput is
important. Remember that each after-image journal file should contain 1200
blocks per number of database nodes. (See Section 9.4.3.)

After-Image Journaling and Recovery 9–37

Enable AIJ Operator Notification
Enable after-image journaling operator notification using the NOTIFY IS
ENABLED clause on the SQL ALTER DATABASE statement.

For example, when journaling activity switches to the last unmodified after-
image journal file, the system operator receives the following broadcast
message:

%%%%%%%%%% OPCOM 17-MAY-1996 13:49:56.41 %%%%%%%%%%
Message from user ORACLEUSER on ALPHA
Oracle Rdb Database DB$DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
Event Notification
Last unmodified AIJ journal has been selected

OpenVMS
VAX

OpenVMS
Alpha

Also, see the OpenVMS documentation for more information about using DCL
commands (such as SET TERMINAL/BROADCAST,
SET BROADCAST=OPCOM, and REPLY /ENABLE=operator-classes).♦

Enable an Emergency After-Image Journal File
You can completely avoid journal file switchover suspension by using the
following logical name or configuration parameter:

• For OpenVMS systems, define the RDM$BIND_ALS_CREATE_AIJ logical
name in the LNM$SYSTEM_TABLE logical name table.

• For Digital UNIX systems, define the RDB_BIND_ALS_CREATE_AIJ
configuration parameter in the rdb.conf configuration file.

If the after-image journal file switchover operation becomes suspended and you
have defined this logical name or configuration parameter, Oracle Rdb creates
an emergency after-image journal file. An emergency after-image journal file
is a standard journal file that the ALS process creates to avoid the journal file
switchover suspension.

Note

If a process fails when the ALS creates an after-image journal file, the
database does not shut down.

You must define the logical name or configuration parameter on all systems
where the AIJ log server (ALS) is active using the following settings:

• Specify the default value ‘‘0’’ to indicate that the ALS process should not
create an after-image journal file

• Specify the value ‘‘1’’ to indicate that the ALS process should create an
after-image journal file

9–38 After-Image Journaling and Recovery

The ALS process creates the emergency journal file using the same
directory and allocation size as for the previous journal file. If an error
occurs (such as inadequate disk space), after-image journal file operations
become suspended.

You can specify the location of the emergency after-image journal file using
the RDM$BIND_AIJ_EMERGENCY_DIR logical name or the RDB_BIND_
AIJ_EMERGENCY_DIR configuration parameter. This logical name or
configuration parameter applies to all databases on the current node.

OpenVMS
VAX

OpenVMS
Alpha

The device and directory you specify must not contain nonsystem concealed
logical definitions.♦

When the ALS process creates the emergency journal file, it notifies you via
the operator notification facility. In addition, you can use the RMU Dump
Header command or the RMU Show Statistics command to identify emergency
after-image journal files.

The following example shows the AIJ Journal Information screen. In the
example, notice the name and file specification of the emergency after-image
journal is EMERGENCY_X where the X represents a 16-character unique
name:

Node: ALPHA Oracle Rdb V7.0-00 Performance Monitor 20-MAY-1996 13:24:27
Rate: 1.00 Second AIJ Journal Information Elapsed: 02:12:56.32
Page: 1 of 1 KODH$:[R_ANDERSON.WORK.ALS]MF_PERSONNEL.RDB;1 Mode: Online
--
Journaling: enabled Shutdown: 60 Notify: enabled State: Accessible
ALS: Manual ABS: disabled ACE: disabled FC: enabled CTJ: disabled

After-Image.Journal.Name....... SeqNum AIJsize CurrEOF Status. State.......
JOURN_1 0 *BACKUP NEEDED* Written Accessible
JOURN_2 1 *BACKUP NEEDED* Written Accessible
JOURN_3 2 *BACKUP NEEDED* Written Accessible
JOURN_4 3 *BACKUP NEEDED* Written Accessible
JOURN_5 4 *BACKUP NEEDED* Written Accessible
JOURN_6 5 *BACKUP NEEDED* Written Accessible
EMERGENCY_009A29D3D0FC262E 6 512 2 Current Accessible
Available AIJ slot 1
Available AIJ slot 2
Available AIJ slot 3
Available AIJ slot 4
--
Bell Exit Help Menu >next_page <prev_page Refresh Set_rate Write Zoom !

After-Image Journaling and Recovery 9–39

Note

You cannot remove the emergency status of an emergency after-image
journal file.

Set an Adequate Time Interval Before Database Shutdown
Set the time interval before database shutdown long enough to allow you to
perform an after-image journal file backup operation and make a journal file
available.

The default is 60 minutes. You can specify using the Shutdown_Timeout
qualifier on the RMU Set After_Journal command as shown in the following
example:

$ RMU/SET AFTER/SHUTDOWN=120/LOG MF_PERSONNEL

Once the database begins to shut down, you cannot change the shutdown
value.

If you cannot back up the journal file during the shutdown time, Oracle
Rdb shuts down the database. Then, the process initiating the after-image
journal file shutdown produces a bugcheck dump to provide an analysis of
the problem. In this case, recovery from an after-image journal file failure is
almost impossible.

Automate the Backup Operation
You should enable the AIJ Backup Server (ABS) or write your own procedure to
automatically back up modified journal files as soon as journal file switchover
occurs:

• Enable the AIJ Backup Server (ABS) Process

The ABS process backs up to disk only, so it is possible for the backup
operation to fail if there is insufficient disk space. You can avoid this
situation by closely monitoring the disk.

Note

If your database is enabled with the Commit To Journal optimization,
shutdown is immediate because the after-image journal file backup
operation is impossible.

Section 9.6.8.1 provides more information about automatically backing up
your journal files.

• Write a Customized Backup Procedure

9–40 After-Image Journaling and Recovery

You might want to write a procedure that determines when journal files
switch and perform a semiautomatic after-image journal file backup
operation.

Section 9.6.9 provides a sample DCL procedure that detects when the after-
image journal file switchover occurs and then automatically backs up the
full journal file.

Use the RMU Show Statistics Screen
Review the information on the AIJ Information and Stall Messages screens
and, if necessary, modify your journaling procedures based on the state of the
after-image journal files.

The AIJ Information screen in Example 9–5 provides real-time information
about the state of the after-image journaling subsystem. For example, assume
that Example 9–5 displays information for a suspended after-image journal
file.

Example 9–5 After-Image Journal File Information Statistics Screen

Node: ALPHA Oracle Rdb V7.0-00 Performance Monitor 21-MAY-1996 11:15:04
Rate: 1.00 Second AIJ Information Elapsed: 00:05:59.77
Page: 1 of 1 DISK$:[ORACLEUSER.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Journaling: Enabled !Shutdown: 56 Notify: Enabled S
ALS: Manual ABS: Disabled ACE: Disabled FC: Enabled CTJ: Enabled

After-Image.Journal.Name....... SeqNum AIJsize CurrEOF Status. State.......
"JOURN_1 #0 *BACKUP NEEDED* Written Access
JOURN_2 1 *BACKUP NEEDED* Written Accessible
$JOURN_3 2 513 %512 Current Access
Available AIJ slot 1
Available AIJ slot 2

Example 9–5 provides an extremely powerful tool for database management
because it displays:

! When an after-image journal file switchover is suspended, the Shutdown
field is highlighted and the number of minutes remaining until database
shutdown is displayed. In this case, 56 minutes remain until the database
is shut down.

" The current state of each after-image journal file. In this example, the
screen indicates that journal file JOURN_1 has been modified (status is
Written) and needs to be backed up *BACKUP NEEDED*. Journal file
JOURN_2 has been modified but has not been backed up.

Journal sequence numbers; in this case, the journal sequence number is 0.

After-Image Journaling and Recovery 9–41

$ When the last available journal file is to be written. Notice that all journal
files except one have been written but the journal files have not been
backed up.

% Used space (512 blocks) in the current journal file. The difference between
the values in the AIJsize and CurrEOF fields indicates how much space is
available until journal file switchover occurs.

The RMU Show Statistics Stall Messages Screen in Example 9–6 identifies
the cause of the after-image journal file switchover suspension. A suspended
journal file switchover is considered a stall, and the stall description identifies
both the problem and the number of minutes remaining until database
shutdown occurs. This stall is not associated with a lock however. The stall is
waiting for the state of a database structure to change.

Example 9–6 Active User Stall Messages Screen

Node: ALPHA Oracle Rdb V7.0-00 Performance Monitor 21-MAY-1996 11:15:16
Rate: 1.00 Second Active User Stall Messages Elapsed: 00:06:11.22
Page: 1 of 1 DISK$:[ORACLEUSER.WORK.AIJ]MF_PERSONNEL.RDB;1 Mode: Online
--
Process.ID Since...... Stall.reason............................. Lock.ID.
2A401E03:1 11:15:07.93 - waiting for 1600-block unmodified AIJ (56 minut
--

Also, you can examine the Active User Stall Messages screen:

• When a transaction process is hung to estimate (worst case) the number
of after-image blocks needed when after-image journal file processing
resumes.

In Example 9–6, Oracle RMU estimates that approximately 1600 blocks
of data might be written to the after-image journal file by all nodes. In
most cases, fewer blocks are written to the after-image journal file when
after-image journal file processing resumes.

• During normal processing to determine approximately how many blocks
have been modified in the current after-image journal file.

For example, any process that writes to the after-image journal file
stalls waiting for the I/O operations to complete. This is because the
I/O operations must be performed as a synchronous operation. The Active
User Stall Messages screen indicates where the last I/O stall to the journal
file occurred, and displays the sequence number of the current journal file.

9–42 After-Image Journaling and Recovery

Use the RMU Dump Header Information
Review the RMU Dump Header information and, if necessary, make
appropriate modifications based on the state of the after-image journal files.

Practice Resolving Journal File Switchover
Even though you make a concerted effort to prevent an after-image journal
file switchover from suspending database operations, Oracle Corporation
recommends that you practice the steps needed to resolve a suspended journal
file switchover condition. You can assimilate journal file switchover by entering
the following command:

$ RMU/SET AFTER_JOURNAL/SWITCH/LOGdatabase_rootfile

9.7.3 Determining If Journal File Switchover Is Suspended
Use the following methods to help you determine when after-image journal file
switchover is suspended:

• The Database Is Shut Down

Typically, this problem goes unnoticed because it usually occurs when the
database is performing batch processing. When the database is shut down,
any attempt to process transactions results in Oracle Rdb terminating the
image returning the AIJTERMINATE error. To restart database activities,
you must perform a full database backup operation.

• Transaction Processing Hang

This problem typically occurs during peak or high-volume periods. When a
transaction process hangs, any application attempting to perform database
modifications does not succeed and waits indefinitely for Oracle Rdb to
return control to the application. It is possible for transactions that hang
to resume processing.

• System Operator Notification

If you enable after-image journal notification (using the NOTIFY IS
ENABLED clause on the SQL ALTER DATABASE statement), Oracle Rdb
returns shutdown messages to the system operator and logs the messages
in the operator-log file.

Using operator notification is an excellent method for database
management because the messages automatically notify you of events
that could result in after-image journaling suspension both before and after
the event occurs. For example, for every I/O operation that is active when
the last active after-image journal file is greater than 90 percent full, the
system operators receive the following broadcast message:

After-Image Journaling and Recovery 9–43

%%%%%%%%%% OPCOM 17-MAY-1996 13:49:56.41 %%%%%%%%%%
Message from user ORACLEUSER on ALPHA
Oracle Rdb Database DB$DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
Event Notification
Last active AIJ journal is 93% full

This notification gives you adequate warning to start journal file
switchover.

If after-image journal file switchover is suspended, the broadcast messages
shown in the following example is sent to the system operators every
minute until database shut down occurs or the situation is corrected:

%%%%%%%%%% OPCOM 17-MAY-1996 13:49:56.41 %%%%%%%%%%
Message from user ORACLEUSER on ALPHA
Oracle Rdb Database DB$DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
Event Notification
!No more available AIJ journals (56 minutes to database shutdown)

Note

Even if terminals are not enabled to receive operator notification, the
messages are recorded in the operator log file. Consult your operating
system documentation for information about using the operator log file.

• RMU Show Statistics Screens

Use the RMU Show Statistics screens to analyze realtime information
about the state of your after-image journal files. See Section 9.7.2 for
several screen examples and descriptions.

9.7.4 Resuming After-Image Journaling Operations
The main reasons that after-image journal file switchover operation suspends
is because of improper after-image journal file backup operations or because
you need to add another after-image journal file.

You can use either of the following commands to resolve the situation:

• RMU Backup After_Journal—Backs up one or more journal files

• RMU Set After_Journal—Adds a new journal file

Each command has trade-offs with respect to the amount of time required to
accomplish the operation.

9–44 After-Image Journaling and Recovery

9.7.4.1 Manually Performing a Full or By-Sequence After-Image Journal File Backup
Even when journal file switchovers are suspended, you can still perform a
manual full or by-sequence after-image backup operation.

As you determine whether to perform a full or by-sequence after-image backup
operation, consider the following:

• A by-sequence after-image backup is essentially a noquiet-point backup
operation. Therefore, it cannot be optimized.

• When performing a full after-image backup operation, the journal file
switchover processing automatically resumes when you back up the first
journal file.

That is, journal file switchover operations resume before the full after-
image backup completes. When combined with the quiet-point capabilities
of the full after-image journal backup operation, this option is most
beneficial.

Performing a Full Quiet-Point Backup Operation
Perform a full after-image backup using the Quiet_Point or the Noquiet_Point
qualifiers. For example:

$ RMU/BACKUP/AFTER_JOURNAL/QUIET_POINT MF_PERSONNEL.RDB BACKUP.AIJ

When you perform a quiet-point after-image journal file backup with fixed-size
after-image journal files, the backup operation completes when all transactions
reach the quiet point and write after-image information to the journal file being
backed up. If an after-image switchover occurs while the after-image journal
file backup operation is waiting for the quiet point, the backup operation
cannot complete. In this situation, you must also back up the new after-image
journal file.

Therefore, Oracle Corporation recommends that you examine the RMU Show
Statistics AIJ Statistics screen to determine the average blocks written per
transaction. If this value exceeds the size of the after-image journal file or
journal files to be backed up, then a quiet-point after-image journal backup
cannot complete. In this case, you must perform noquiet-point after-image
journal backup or increase the size of the after-image journal files.

Performing a By-Sequence NoQuiet-Point Backup Operation
You can perform a by-sequence after-image journal backup operation using the
Sequence=(n[,m]) qualifier. For example:

$ RMU/BACKUP/AFTER_JOURNAL/SEQUENCE=(5,6) MF_PERSONNEL.RDB BACKUP.AIJ

After-Image Journaling and Recovery 9–45

To estimate how long the backup operation might take to complete, assume
that the typical after-image journal backup operation runs at approximately
1000 blocks per second, not including overhead costs (such as startup). This
means that it would take approximately 9 minutes to back up a 500,000 block
after-image journal file.

Note

Because system performance varies widely, Oracle Corporation
recommends that you perform an independent analysis of the after-
image journal backup performance on your system.

9.7.4.2 Adding a New After-Image Journal File
Some situations require that you add a new journal file rather than back
up the currently existing journal files. This is likely to occur when you use
only two after-image journal files. For example, if there are two modified
journal files and an after-image journal file switchover suspension occurs, you
cannot perform a quiet-point backup operation because the transactions cannot
commit until a journal file is made available.

When the only other option is to add a new after-image journal file, you must:

• Have at least one unused after-image journal slot available.

• Be sure you size the new journal file to accommodate all the pending
after-image journal file modifications.

While journaling file switchover is suspended, it is possible to accumulate
up to 1200 blocks of after-image journal file information per node. For
instance, if five nodes are actively accessing the database at the time that
after-image journal file switchover suspends, then up to 6000 blocks of
after-image journal file information can be written to the newly added
journal file.

Adding a journal file with an allocation size smaller than this might
result in the new journal file immediately being full and requiring another
switchover. This scenario could result in another immediate suspension.

Also, adding a new after-image journal file is a journaled operation requir-
ing approximately three blocks of after-image journal file information.

See Section 9.7 for more information.

9–46 After-Image Journaling and Recovery

Detecting a Deadly Embrace
In addition, you cannot back up a journal file until all transactions have been
committed. This situation, called a deadly embrace, is detected by Oracle RMU
when it performs a backup operation on an after-image journal file. (This
situation does not occur if you perform a noquiet-point after-image backup.)

The following example shows two backup operations in which the after-image
journal backup operation detects the deadly embrace and reports the condition
by returning the AIJNOBACKUP status:

ALPHA> RMU/BACKUP/AFTER/QUIET/LOG MF_PERSONNEL BACKUP.AIJ
%RMU-I-AIJBCKBEG, beginning after-image journal backup operation
%RMU-I-AIJBCKSEQ, backing up after-image journal sequence number 0
%RMU-I-LOGBCKAIJ, backing up after-image journal JOURN_1
%RMU-I-AIJNOBACKUP, AIJ contains no transactions that qualify for backup
%RMU-I-AIJBCKEND, after-image journal backup operation completed successfully

ALPHA> RMU/BACKUP/AFTER/NOQUIET/LOG MF_PERSONNEL BACKUP.AIJ
%RMU-W-DATACMIT, unjournaled changes made; database may not be recoverable
%RMU-I-AIJBCKBEG, beginning after-image journal backup operation
%RMU-I-AIJBCKSEQ, backing up after-image journal sequence number 0
%RMU-I-LOGBCKAIJ, backing up after-image journal JOURN_1
%RMU-I-LOGCREBCK, created backup file DISK$:[USER]BACKUP.AIJ;1
%RMU-I-AIJBCKSEQ, backing up after-image journal sequence number 1
%RMU-I-LOGBCKAIJ, backing up after-image journal JOURN_2
%RMU-I-AIJNOBACKUP, AIJ contains no transactions that qualify for backup
%RMU-I-AIJBCKEND, after-image journal backup operation completed successfully
%RMU-I-LOGAIJJRN, backed up 1 after-image journal at 08:26:46.50
%RMU-I-LOGAIJBLK, backed up 254 after-image journal blocks at 08:26:46.50

The AIJNOBACKUP as it appears in an RMU/BACKUP/AFTER/QUIET log.

The AIJNOBACKUP as it appears in an RMU/BACKUP/AFTER/NOQUIET log.

In the example, the noquiet-point after-image journal backup operation backed
up several journal files before detecting the deadly embrace condition.

Note

The exact cause of the deadly embrace is not reported by the after-
image journal backup utility.

After-Image Journaling and Recovery 9–47

Detecting Stalled Backup Operations
It is possible a backup operation that you start with the RMU Backup After_
Journal command might stall if the database is suspended. This usually occurs
because there are no journal files available for the backup operation. For
example, journal files might be unavailable if the oldest modified journal file
contains an active checkpoint. This condition can occur if you define a sorted
index on a table with many rows or insert large multimedia segmented strings.

The following example shows a backup operation that is stalled:

$ RMU/BACK/AFTER/LOG/NOQUIET CHECK_RDB NOQUIET1
%RMU-W-DATACMIT, unjournaled changes made; database may not be recoverable
%RMU-I-AIJBCKBEG, beginning after-image journal backup operation
%RMU-I-AIJBCKSEQ, backing up after-image journal sequence number 51
%RMU-I-LOGBCKAIJ, backing up after-image journal CHECK_AIJ1 at 14:21:55.30
%RMU-I-LOGCREBCK, created backup file DISK$USER1:[ORACLEUSER]NOQUIET1.AIJ;1
%RMU-F-AIJJRNBSY, journal CHECK_AIJ1 is busy and cannot be backed up
%RMU-I-OPERNOTIFY, system operator notification:
Oracle Rdb Database DISK$USER1:[ORACLEUSER]CHECK_RDB.RDB;1 Event Notification
AIJ manual backup operation failed

You can detect when the existing journal files are full or otherwise are not
available for backup by looking at the following information:

• Operator messages such as the following:

%%%%%%%%%%% OPCOM 10-MAY-1996 11:10:15.38 %%%%%%%%%%%
Message from user ORACLEUSER on ALPHA
Oracle Rdb Database DISK$USER1:[ORACLEUSER]CHECK_RDB.RDB;1
Event Notification
New AIJ journal must be added (117 minutes to database shutdown)

• The state of the after-image journal files with the AIJ Information in RMU
Show Statistics screens. Compare the journal sequence numbers with the
checkpoint numbers available through RMU Dump User command. The
following example shows the output from the RMU Dump User command:

$ RMU/DUMP/USER CHECK_RDB
Active user with process ID 000003D6
Stream ID is 1
Monitor ID is 1
Transaction ID is 13
Recovery journal filename is "DISK2:[RDM$RUJ]CHECK_RDB$00979806C1A39FA4.RU
Read/write transaction in progress
Last AIJ checkpoint 8:2 !
Transaction sequence number is 533

9–48 After-Image Journaling and Recovery

Active user with process ID 000003D1
Stream ID is 1
Monitor ID is 1
Transaction ID is 41
Recovery journal filename is "DISK2:[RDM$RUJ]CHECK_RDB$00979806C20547A4.RU
Read/write transaction in progress
Last AIJ checkpoint 6:4065 "
Transaction sequence number is 532

! The location of the last checkpoint record for this user is in journal
sequence number 8, VBN 2.

" The location of the last checkpoint record for this user is in journal
sequence number 6, VBN 4065.

You can use the RMU Show Statistics command (AIJ Information screen)
to confirm that this journal file is the oldest (lowest sequence number).

Because the oldest (lowest) checkpoint record for any user in this database
is in the journal file with sequence number 6, you cannot make journal 6
or any later journal file available for either backup or overwrite operations.
When user 000003D1 checkpoints again in a later journal file, then journal
6 becomes available for backup or to be written over.

The following example shows the operator message requesting that you add
a journal file rather than attempt a backup operation:

%%%%%%%%%%% OPCOM 10-MAY-1996 11:10:15.38 %%%%%%%%%%%
Message from user ORACLEUSER on ALPHA
Oracle Rdb Database DISK$USER1:[ORACLEUSER]CHECK_RDB.RDB;1
Event Notification
New AIJ journal must be added (117 minutes to database shutdown)

If journaling is suspended and the oldest active checkpoint is in the oldest
journal file (smallest sequence number), the RMU Backup After_Journal
command hangs if you try to backup the journal files. Confirm the oldest
active checkpoint using the RMU Dump User command and compare it to
the current oldest journal sequence number.

• Review the RMU Show Statistics Stall Messages screen to determine
whether to backup an existing after-image journal file or add a new one.

The Stall Messages screen indicates the number of after-image journal file
blocks that are required to complete the after-image journal file switchover
operation. If the number of blocks displayed is larger than the current
after-image journal files, add a new after-image journal file instead of
backing up the existing after-image journal files. Once you add the new
after-image journal file immediately back up the existing journal files.

After-Image Journaling and Recovery 9–49

9.7.5 Recovering the Database
If you cannot resume after-image journal file processing before the database
shuts down or if a database process terminates abnormally when a journal file
switchover operation is suspended, Oracle Rdb automatically shuts down the
database, terminates all active processes, and returns the AIJTERMINATE
message.

Note

When the database is shut down, you can use the RMU Show Statistics
command to obtain information about the state of the database.
However, when you exit from the utility, Oracle RMU returns the
AIJTERMINATE message.

Now, the database is unusable and it is not recoverable because after-
image journal files are unavailable. Because journal file information is
lost permanently, Oracle Rdb does not allow processes to attach to the
database. Processes that fail produce a bugcheck dump that does not contain
an exception. In place of the exception in the stack trace portion of the
bugcheck dump, there is an AIJUTL$ABORT routine. Similarly, if the ALS
process is running, it bugchecks with the same AIJUTL$ABORT routine
instead of an exception.

When the database shuts down, Oracle Rdb maintains database integrity. All
modifications not journaled are written directly to the database. Oracle Rdb
clears all modified journal file buffers containing committed transactions that
have not checkpointed. In addition, Oracle Rdb writes undo information for
the current transaction to the recovery-unit journal file so that you can undo
the current transaction when the suspended after-image journaling activities
resume.

Warning

When the database is suspended, do not abort any process accessing
the database for any reason. The recovery (DBR) process shuts down
the database because pending after-image journal file data or rollback
records cannot be written to the after-image journal file.

9–50 After-Image Journaling and Recovery

You can reactivate the database without performing a full database restore
operation (from the database backup file) by following this procedure:

1. Disable after-image journaling to allow access to the database so that the
subsequent commands can be processed. For example:

$ RMU/SET AFTER_JOURNAL/DISABLE DB.RDB

2. Drop (delete) all inaccessible journal files.

It is not necessary to drop all journal files, but you should drop all
journal files that are marked as inaccessible (use the RMU Dump Header
command to see the journal files that are inaccessible). After you delete the
last inaccessible journal file, Oracle Rdb automatically reactivates after-
image journaling. However, journaling remains disabled. (You re-enable
journaling in step 4.) For example:

$ RMU/SET AFTER/DROP=(NAME=AIJ_2) DB.RDB

3. Add the dropped journal files back into the journaling system as soon as
possible.

$ SQL
SQL> ALTER DATABASE FILENAME DB
cont> ADD JOURNAL JOURN_2 FILENAMEaij-2-filespec ;

4. Re-enable after-image journaling.

Remember that adding after-image journal files does not automatically
enable journaling. You must enable after-image journaling either when you
add journal files or as a separate operation. For example:

$ RMU/SET AFTER_JOURNAL/ENABLED DB.RDB

5. Immediately after journaling starts, back up the database.

Note

The database is unrecoverable until you perform a full database
backup.

$ RMU/BACKUP DB.RDB DB_FULL.RBF

After-Image Journaling and Recovery 9–51

9.8 Optimizing After-Image Journaling Performance
To improve database performance, consider using some of the following
methods to optimize I/O operations when after-image journaling is enabled:

Optimization SQL Clause Description

Enable the
AIJ log
server (ALS)

LOG SERVER IS AUTOMATIC
LOG SERVER IS MANUAL

For high transactions-per-second (TPS) systems, this optimization
reduces locking and I/O operations to the after-image journal file

Enable the
AIJ cache

CACHE FILENAME cache-file-
spec

For an electronic disk device, this optimization reduces wait time
for a transaction during the commit operation and permits you to
implement a fast electronic device as a write-through cache

Enable the
fast commit
option

FAST COMMIT IS ENABLED For update-intensive applications, this optimization eliminates I/O
operations to recovery-unit journal files and storage area files, and
postpones writing data modifications to the after-image journal file
and the database root file

Enable the
commit-
to-journal
option

COMMIT TO JOURNAL For update-intensive applications, enable this optimization in
conjunction with the fast commit option to further enhance
performance by eliminating the majority of I/O operations to
the database root file

You can enable these optimizations by including the appropriate clauses on
either the SQL ALTER DATABASE or SQL CREATE DATABASE statement.

Note

You must use after-image journaling whenever you enable either the
fast commit or the commit-to-journal optimizations. Furthermore, you
must use the fast commit option when you enable the commit-to-journal
option.

When you use these optimizations, application performance is improved
compared to the same application running without after-image journaling
enabled. Fast commit processing optimizes commit processing at the expense
of recovery processing time. However, you can tune or reduce the recovery time
by setting shorter or optimum checkpoint intervals.

The following sections briefly describe how the fast commit and commit-to-
journal optimizations affect after-image journaling and journal file backup
procedures. For complete information about using these optimizations, refer to
the:

9–52 After-Image Journaling and Recovery

• Oracle Rdb7 Guide to Database Performance and Tuning for more
information about optimizing Oracle Rdb after-image journaling
performance

• Oracle Rdb7 SQL Reference Manual for more information about specifying
the appropriate SQL statements and clauses

9.8.1 Fast Commit Processing
When transactions without the fast commit option execute a COMMIT
statement, Oracle Rdb writes the data modification to the recovery-unit journal
file, the storage area files, the after-image journal file, and the database root
file on disk. Fast commit processing enhances journaling performance by
delaying how frequently data is written to disk. Instead of writing data to
the disk as soon as a transaction commits, fast-commit processing keeps the
updated database pages in a buffer pool. That is, database write I/O operations
are performed asynchronously.

Checkpointing
Oracle Rdb writes updated pages from the buffer pool to disk when a user-
specified threshold (called a checkpoint) is reached. A checkpoint occurs when
a process detaches from the database, the buffer pool overflows, or metadata
changes are performed. When the checkpoint occurs, all the updated pages for
multiple transactions are written to disk.

The write operation to the after-image journal file on disk is triggered when
each user process writes a checkpoint to the after-image journal file. When
a checkpoint occurs, all updated pages are written back to disk. Between
checkpoints, the pages are written to disk only if the buffer or database page is
flushed because:

• A user needs to access the after-image journal file buffer

• A user requests data on the data page

• A user enter the RMU Checkpoint command

Automatic Database Recovery
If there is a database failure, or if a user process fails, the fast commit pro-
cessing provides redo capability; that is, the fast commit option automatically
begins re-doing all committed transactions since the last checkpoint. You do
not need to enter the RMU Recover command to begin database recovery
operations when the fast commit option is enabled.

After-Image Journaling and Recovery 9–53

If a user process fails and the database recovery (DBR) server process starts
up, the DBR process:

1. Reads the after-image journal file and reapplies all the committed
transactions starting with the failed user’s checkpoint record. (This works
because after-image journal file data is always flushed, including at the end
of the transaction, unlike the live data pages.)

2. Reads the recovery-unit journal file to roll back any data that was written
to the after-image journal file but was not committed to the database.

9.8.1.1 Changes to the Journal File
Fast commit processing requires that you enable after-image journaling for
recovery purposes. This is because Oracle Rdb writes committed transactions
only to after-image journal file buffers until a checkpoint triggers a write I/O
operation of the journal file buffer to disk. If a subsequent transaction fails,
you must redo all the previous transactions back to the last checkpoint because
the updated pages have not been written to disk.

To reprocess these transactions, Oracle Rdb uses the information written to
the after-image journal file. In addition, if the recovery-unit journal file buffer
has written the transaction to the database file, the failed transaction is rolled
back.

The recovery-unit journal file contains the following additional information
required by the DBR process when you have fast commit processing enabled:

• A transaction ID (TID) that identifies each user attached to a database.
The DBR uses the TID to identify which after-image journal file record
belongs to which user.

• A page sequence number (PSN) that identifies the state of a page. The
after-image journal PSN is used to optimize the recovery process.

When the DBR process executes, it first recovers the updated pages not
flushed to disk, and then rolls back the transaction that was current when
the abnormal failure occurred.

To recover completed transactions, the DBR process executes the following
steps:

1. The DBR process looks at the user’s run-time user process block (RTUPB)
to find where the user last checkpointed. All updates that occurred prior to
the last checkpoint are already reflected in the database.

2. The DBR process records the end of the journal file. The DBR process now
has a starting point (the checkpoint VBN) and an end point (the end of the
journal file). This is the after-image journal file range that it must process.

9–54 After-Image Journaling and Recovery

3. The DBR process reads through the after-image journal file range looking
for after-image journal file records marked with the TID of the failed
process. If the DBR process finds a commit record for a transaction for this
TID, it compares the PSN for the after-image journal file record with the
PSN for the data page. If the PSNs do not match, the DBR process can
ignore the redo operation. If the PSNs match, the DBR process must apply
the after-image journal file record to the page.

9.8.1.2 Effects On the Journal File Backup Operations
Because the DBR process needs a set of after-image journal file records to redo
a failed process, after-image journal file backup behavior is slightly different
when the fast commit option is enabled. Instead of backing up the entire
journal file, the journal file is backed up only to the last checkpoint record.
After-image journal records after the last checkpoint record are not backed up
because the recovery operation needs these records in the event the transaction
must be rolled back.

In Figure 9–3, if an after-image journal backup operation occurred after P2
checkpointed but before the system failed, the backup operation records the
contents in the journal file up to VBN 225 because the records after that last
active checkpoint are needed for recovery.

After-Image Journaling and Recovery 9–55

Figure 9–3 Checkpoint Processing and the Journal File Backup Procedure

Checkpoint interval = 100 blocks

 attaches; writes ckpt record at VBN 120;

attaches; writes ckpt record at VBN 150;

 ckpts (105 blocks written to AIJ); P1 writes
new ckpt record; target VBN = 325; oldest
active ckpt now at VBN 150 (P2)

 ckpts (125 blocks written
to AIJ); P2 writes new
ckpt record; target VBN =
375; oldest active ckpt

When the system fails:

 − P1: transactions back to last ckpt (VBN 225) must be redone.

 − P2: no transactions to redo; DBR process must undo last, uncommitted transaction.

NU−2363A−RA

VBN
150

VBN
225

VBN
275

30 20 1010 1020 2015 2020

P1 P2P1P1 P1 P2P2P1 P1 P1 P2

VBN
120

System
Failure

Indicates number of blocks
written to .AIJ file

P1

P2

P1

P2

target VBN = 250

target VBN = 220

now at VBN 225 (P1)

After recovering committed transactions, the DBR process executes the
rollback phase by rolling back the failed transaction, using the recovery-
unit journal (.ruj) file. If a transaction updates a database and a user executes
a ROLLBACK statement, Oracle Rdb:

1. Rolls back the effects of the current transaction

2. Flushes the data pages back to disk

3. Checkpoints

9–56 After-Image Journaling and Recovery

Thus, a database rollback operation triggers a checkpoint. If the transaction
did not update the database, there is no need to write anything to disk and a
checkpoint does not occur.

9.8.1.3 Disk Space Requirements for an Extensible Journal File
If you are using a single extensible journal file and plan to perform regular
after-image journal file backup operations, plan to use twice the space of the
journal file on the disk where the journal file is located. The backup process
must compress and retain some fraction of the original journal file or files.
This fraction can approach 100 percent of the original size. Therefore, be sure
to reserve enough disk space to duplicate the maximum size of the journal file.

Oracle Rdb recommends that you schedule journal file backup operations with
sufficient frequency and check the free space and journal file size periodically
so that you know when you are approaching a critical situation in terms of free
space. This is a good practice when using a single extensible journal file even
if you do not have fast commit transaction processing enabled.

If you enter the RMU Backup After_Journal command and you find that there
is insufficient disk space for the journal file, try the following options to work
around this problem:

• Delete unneeded files on the disk to create sufficient space on the disk
where the journal file is located.

• Temporarily disable fast commit processing and back up the journal file.

• Close the database, disable after-image journaling, enable a new after-
image journal file, and perform a full database backup operation. You can
open the database either before or after the full database backup operation.

• Close the database. Create a bound volume set or a striped set of disks
that is large enough for the journal file and copy the journal file there. Use
the RMU Set After_Journal command to drop the old journal file name and
add the new journal file name (or redefine the logical name if one was used
to locate the journal file), then open the database again.

9.8.1.4 Effects When Fixed-Size Journal Files Switch Over
If you are using multiple fixed-size journal files, when journaling switches to
another available after-image journal file, a checkpoint occurs. The checkpoint
ensures that all committed transactions are written to disk from the after-
image journal file before it becomes unavailable. Then, a checkpoint record is
written in the new available journal file immediately following the open record.

After-Image Journaling and Recovery 9–57

If an undo/redo operation becomes necessary, only the committed transactions
written to the current after-image journal file since the last checkpoint are
written to disk (redo) and the uncommitted transactions for the same process
are undone (undo) using the user’s recovery-unit journal file. This occurs
because uncommitted transactions are retained in the recovery-unit journal
file for each user’s process. Thus, for fast commit transaction processing
on a database system using multiple fixed-size journal files, when a journal
file switchover occurs, Oracle Rdb automatically ensures that the undo/redo
operation can always succeed with the current journal file.

9.8.2 Commit To Journal Option
For update-intensive applications, you can use the Oracle RMU Commit To
Journal option to increase processing speed during commit transactions.

The Commit To Journal optimization increases commit processing speed by
eliminating the majority of I/O operations to the database root file. Commit
information that is normally written to the database root file is written to the
after-image journal file buffer until a checkpoint occurs. Then, the buffered
information is written to the after-image journal file on disk.

If you enable the Commit To Journal option, you must also:

• Enable after-image journaling

• Enable fast commit processing

• Disable snapshots (or use the Enable Deferred option on the CREATE
TRANSFER (Replication Option for Rdb) statement)

9.9 Recovering Transactions from Journal Files
After a disk failure, you can use the saved backup files for the database and
the after-image journal file or files to restore the database to the state it was
in before the failure occurred.

Restoring a database or storage areas from a backup file produces a database
that is current up to the point of the most recent database or storage area
backup operation. Recovering journal files recovers transactions committed
against the database up to the point of the most recent commit statement.
Once the restore operation completes:

• For extensible journal files, you must use the RMU Recover command to
roll forward all transactions for the database.

9–58 After-Image Journaling and Recovery

• For fixed-size journal files, recovery is automatic if all journal files are
available. By default, once the database restore operation completes,
recovery is automatic if all journal files are available.

The following sections describe how fixed-size journal files are automatically
recovered and the steps involved in manually recovering a database.

9.9.1 Automatic Recovery for Fixed-Size Journal Files
For automatic recovery, any existing on-disk journal files are automatically
examined to determine if the information in the journal file headers is valid. If
the information is determined to be valid:

• The information from the on-disk after-image journal files is recovered into
the database root data structures.

• Once the database root data structures are updated, the after-image
journal file recovery operation begins and automatically rolls forward the
information contained in the journal files.

For most types of database applications and especially for highly available
database applications requiring 24-hour-by-7-day coverage (24x7 operations),
an automatic recovery strategy is best. But this comes at the expense of
requiring more disk drives for your database application.

You can disable automatic recovery using the Norecovery qualifier on the RMU
Restore command. You might choose to perform a manual recovery if you need
to restore some incremental backup files prior to recovering the database.

However, when you manually recover after-image journal files, you must
carefully manage journal files to determine the correct order in which to apply
backed-up journal files. Because the database root file structures are incapable
of tracking backed-up journal files, it is essential that you use meaningful
file-naming conventions to facilitate management of backed-up journal files
and ensure a successful recovery operation.

9.9.2 Steps for Recovering a Database
To recover the database, you need to use the RMU Restore command to
restore the database from the full backup file, and then use the RMU Recover
command to roll forward the transactions stored in the after-image journal file
to the database restored from a full backup file.

The following list shows you the steps for recovering the database to a known,
uncorrupted state:

1. Delete the corrupt database or storage areas.

After-Image Journaling and Recovery 9–59

2. Restore the database, specific storage areas, or pages:

Restore the database using RMU Restore

Restore one or more storage areas using the Area and Online qualifiers
on the RMU Restore command

Restore one or more pages using the Area, Online, and Just_Corrupt
qualifiers on the RMU Restore command

If . . . And . . . Then . . .

Journal files are
accessible on disks

Information in the
journal file headers is
valid

Recovery is automatic following a restore operation.

You perform a restore
operation

Specify the Norecovery
qualifier

Recovery becomes a manual operation. You must specify
the Norecovery qualifier if you perform incremental restore
operations.

3. Update the restored database, storage areas, or database pages from the
last incremental backup operation by using the RMU Restore command
and including the Incremental qualifier, or the Area and Online qualifiers.

If . . . And . . . Then . . .

You have lost one or more
storage areas

Have restored
just these
storage areas

When you display the database root file header, these storage areas
are marked as inconsistent. This information appears in the status
section of the display of the database root header for each affected
storage area.

You find one or more pages
are corrupt in a storage
area1

You restore just
these pages

When you display the database root file header, the storage area
containing these pages is marked as inconsistent, if there are
journal files that must also be applied to make the area consistent.

1As determined from a display of the corrupt page table (CPT), using the RMU Show Corrupt_Pages command.

In Example 9–7, the EMP_INFO storage area was lost. To bring the
database to its most current state, you must restore the EMP_INFO
storage area and then display the database root file to determine if any
storage areas are marked as inconsistent. If one or more storage areas are
marked as inconsistent, continue to the next step and recover the journal
files in proper sequence.

9–60 After-Image Journaling and Recovery

Example 9–7 Restoring and Recovering a Lost Storage Area

! An RMU Verify operation shows that the EMP_INFO storage area cannot
! be found.
!
$ RMU/VERIFY MF_PERSONNEL
%RMU-F-OPNFILERR, error opening file DUA1:[ORION]EMP_INFO.RDA;3
%RMU-F-FILNOTFND, file not found
%RMU-E-BDAREAOPN, unable to open file DUA1:[ORION]EMP_INFO.RDA;3
for storage area EMP_INFO
%RMU-F-ABORTVER, fatal error encountered; aborting verification
!
! Or, access to the storage area returns a file-not-found error message.
!
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SELECT COLLEGE_CODE,COLLEGE_NAME,CITY,STATE,POSTAL_CODE FROM COLLEGES;
%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening storage area file DUA1:[ORION]EMP_INFO.RDA;3
-RMS-E-FNF, file not found
!
! The EMP_INFO storage area is lost. The EMP_INFO storage area must be
! restored. A restore operation automatically applies .aij files if they
! are available, modified, and on disk.
!
RMU/RESTORE/NOCDD_INTEGRATE/AREA/LOG MFPERS.RBF EMP_INFO
%RMU-I-RESTXT_04, Thread 1 uses devices DUA1:
%RMU-I-LOGRESSST, restored storage area DUA1:[ORION]EMP_INFO.RDA;1
%RMU-I-LOGRESSST, restored storage area DUA1:[ORION]EMP_INFO.RDA;1
%RMU-I-RESTXT_05, rebuilt 1 space management page
%RMU-I-RESTXT_06, restored 0 inventory pages
%RMU-I-RESTXT_07, rebuilt 0 logical area bitmap pages
%RMU-I-RESTXT_08, restored 30 data pages
%RMU-I-RESTXT_01, Initialized snapshot file DUA2:[ORION]EMP_INFO.SNP;1
%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJRECARE, Recovery of area EMP_INFO starts with AIJ file sequence 0
%RMU-I-AIJBADAREA, inconsistent storage area DUA1:[ORION]EMP_INFO.RDA;1
needs AIJ sequence number 0
%RMU-I-LOGRECDB, recovering database file DUA3:[ORION]MF_PERSONNEL.RDB;1

(continued on next page)

After-Image Journaling and Recovery 9–61

Example 9–7 (Cont.) Restoring and Recovering a Lost Storage Area

%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file DUA11:[ORION]MFPERS.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 2 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 1
%RMU-I-LOGOPNAIJ, opened journal file DUA12:[ORION]MFPERS1.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 2
%RMU-I-LOGOPNAIJ, opened journal file DUA13:[ORION]MFPERS2.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 2 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 6 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 2 transactions ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJGOODAREA, storage area DUA1:[ORION]EMP_INFO.RDA;1 is now consistent
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 2

!
!==
! If you specify NoRecovery in the restore operation, no journal files
! are applied automatically.
!
$ RMU/RESTORE/NORECOVERY/AREA/LOG MFPERS_FULL.RBF EMP_INFO
%RMU-I-RESTXT_04, Thread 1 uses devices DUA1:
%RMU-I-LOGRESSST, restored storage area DUA1:[ORION]EMP_INFO.RDA;3

(continued on next page)

9–62 After-Image Journaling and Recovery

Example 9–7 (Cont.) Restoring and Recovering a Lost Storage Area
%RMU-I-LOGRESSST, restored storage area DUA1:[ORION]EMP_INFO.RDA;3
%RMU-I-RESTXT_05, rebuilt 1 space management page
%RMU-I-RESTXT_06, restored 0 inventory pages
%RMU-I-RESTXT_07, rebuilt 0 logical area bitmap pages
%RMU-I-RESTXT_08, restored 30 data pages
%RMU-I-RESTXT_01, Initialized snapshot file DUA2:[ORION]EMP_INFO.SNP;3
%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long
%RMU-I-AIJWASON, AIJ journalling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJRECARE, Recovery of area EMP_INFO starts with AIJ file sequence 0
!
! Display the database root file header to determine the status of the
! EMP_INFO storage area. It is marked as inconsistent (consistent
! to TSN 75). There are transactions that need to be rolled forward
! to make the EMP_INFO storage area consistent again.
!
$ RMU/DUMP/HEADER MF_PERSONNEL

.

.

.
Storage area EMP_INFO

.

.

.
Status...

- Area is marked inconsistent
Consistent to TSN 0:75
Roll-forward sequence number is 0

- Area last backed up at 2-MAY-1996 12:53:25.84
- Area has never been incrementally restored

.

.

.

(continued on next page)

After-Image Journaling and Recovery 9–63

Example 9–7 (Cont.) Restoring and Recovering a Lost Storage Area

!
! You must apply at least the first journal file manually. The remaining
! journal files are automatically applied if they are available,
! modified, and on disk.
! Display the open record of each journal file to determine which is
! AIJ sequence number 0. It is MFPERS.AIJ. This information can also
! be obtained by displaying the database root file (.rdb) file (RMU Dump
! command with the Header qualifier), as shown previously.
!
$ RMU/DUMP/AFTER_JOURNAL MFPERS.AIJ

.

.

.
AIJ Sequence Number is 0

.

.

.
$ RMU/DUMP/AFTER_JOURNAL MFPERS1.AIJ

.

.

.
AIJ Sequence Number is 1

.

.

.
$ RMU/DUMP/AFTER_JOURNAL MFPERS2.AIJ

.

.

.
AIJ Sequence Number is 2

.

.

.

(continued on next page)

9–64 After-Image Journaling and Recovery

Example 9–7 (Cont.) Restoring and Recovering a Lost Storage Area

!
! Roll forward the MFPERS.AIJ file.
!
$ RMU/RECOVER/LOG/AREA=EMP_INFO MFPERS.AIJ;1
%RMU-I-AIJBADAREA, inconsistent storage area DUA1:[ORION]EMP_INFO.RDA;3
needs AIJ sequence number 0
%RMU-I-LOGRECDB, recovering database file DUA1:[ORION]MF_PERSONNEL.RDB;3
%RMU-I-LOGOPNAIJ, opened journal file DUA11:[ORION]MFPERS.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 1
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file DUA12:[ORION]MFPERS1.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence
number needed will be 2
%RMU-I-AIJAUTOREC, starting automatic after-image journal recovery
%RMU-I-LOGOPNAIJ, opened journal file DUA13:[ORION]MFPERS2.AIJ;1
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed

(continued on next page)

After-Image Journaling and Recovery 9–65

Example 9–7 (Cont.) Restoring and Recovering a Lost Storage Area

%RMU-I-LOGSUMMARY, total 6 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 0 transactions ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJGOODAREA, storage area DUA1:[ORION]EMP_INFO.RDA;1 is now consistent
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 3
!
! Display the database root file header to determine the status of the
! EMP_INFO storage area. It is marked consistent. This means that
! there are no additional transactions that need to be rolled forward
! to make the EMP_INFO storage area consistent again.
!
$ RMU/DUMP/HEADER MF_PERSONNEL

.

.

.
Storage area EMP_INFO

Status...
- Area last backed up at 2-MAY-1996 12:53:25.84
- Area has never been incrementally restored

.

.

.
!
! Verify the area, and if successful, back up the entire database.
!

4. Because the restore operation specified Norecovery, use the:

RMU Recover command to apply the transactions in the journal file to
the new, now fully restored copy of the database

RMU Recover command with the Area and Online qualifiers to apply
the transactions in specific storage areas

The result of the rollforward operation is that all transactions committed
before a disk failure are reapplied to the database or specified storage
areas. There may be more than one journal file to recover, depending on
the use of the RMU Backup After_Journal command.

When you use the RMU Recover command to apply transactions from the
after-image journal file, your journal file specification must include the
device, and, if the device is a disk, you must include the directory as shown
in Example 9–8.

9–66 After-Image Journaling and Recovery

Example 9–8 Recovering a Database and Specifying the Device and File
Specification of Journal File

$ RMU/RECOVER DISK1$:[DATABASE.JOURNAL]MF_PERSONNEL.AIJ

To roll forward journal files for specific storage areas, use the RMU Recover
command with the Area and Online qualifiers to perform this operation
on line and still allow access to the other storage areas of the database.
Section 9.9.3 describes how to determine the after-image journal sequence
number for a journal file and the proper order in which to recover multiple
journal files. See Example 9–7 for an example scenario of recovery by area.

If you are rolling forward journal files for one or more storage areas, you
can do this operation on line and still allow access to the other pages in the
storage area of the database by using the RMU Recover comamnd with the
Area, Online, and Just_Corrupt qualifiers.

Refer to the Oracle RMU Reference Manual for exact syntax and examples
of this operation.

5. Verify the integrity of the database or specific storage areas using:

• The RMU Verify command

• The RMU Verify command with the Area qualifier

If the integrity of the database is fine, go to step 5. If the integrity check
fails, see Chapter 5 to determine what to do next.

The verify operation cannot detect transaction inconsistencies in the
database unless you are restoring the database by storage area. This is
because at least one index is defined for a table in the restored storage
area that has rows that need to be rolled forward. The index resides in a
different storage area from the table.

Under these circumstances, you can use the RMU Verify command with
either the All qualifier or the Index qualifier and the name of the index
defined for the table in the storage area being restored and recovered.

In Example 9–9, the index verification portion of RMU Verify command
with the All qualifier detects three missing rows in the COLLEGES table in
the EMP_INFO storage area and returns errors fetching dbkeys and errors
fetching data records. The EMP_INFO storage area was lost and then
restored but no journal files were rolled forward. In this particular case,
the sorted COLL_COLLEGE_CODE index is defined for the COLLEGES
table that resides in a different storage area, the RDB$SYSTEM storage
area. The index has pointers to its rows, and a data fetch of these rows
as part of the index verification indicates that the rows are missing. Once

After-Image Journaling and Recovery 9–67

the journal files are rolled forward and these three rows are recovered, the
database is consistent again and index errors are resolved.

Example 9–9 Detecting Index Errors in an Inconsistent Database

$ RMU/VERIFY/ALL /LOG MF_PERSONNEL
.
.
.

%RMU-I-BGNNDXVER, beginning verification of index COLL_COLLEGE_CODE
%RMU-I-OPENAREA, opened storage area EMP_INFO for protected retrieval
%RMU-E-LNGTRLNDX, line 15 beyond line index on page
%RMU-E-BADDBKFET, error fetching dbkey 67:10:15
%RMU-E-ERRDATFET, error fetching data record from B-tree index node
%RMU-I-BTRNODDBK, dbkey of B-tree node for data record is 42:665:0
%RMU-E-LNGTRLNDX, line 16 beyond line index on page
%RMU-E-BADDBKFET, error fetching dbkey 67:10:16
%RMU-E-ERRDATFET, error fetching data record from B-tree index node
%RMU-I-BTRNODDBK, dbkey of B-tree node for data record is 42:665:0
%RMU-E-LNGTRLNDX, line 17 beyond line index on page
%RMU-E-BADDBKFET, error fetching dbkey 67:10:17
%RMU-E-ERRDATFET, error fetching data record from B-tree index node
%RMU-I-BTRNODDBK, dbkey of B-tree node for data record is 42:665:0
%RMU-I-NDXERRORS, 3 index errors encountered

.

.

.

6. Use the Online qualifier on the RMU Backup command to perform a full,
online, database backup operation to a new disk or tape that specifies a
new backup file name different from your previous backup copy.

Backing up your now fully restored and recovered database provides a new
starting point should you need to subsequently restore and recover your
database. You should change your after-image journal file just prior to
issuing the backup command, as described in Section 9.6.4.

9.9.3 Manually Recovering Journal Files
When you manually recover a database, it is important to apply the journal
files in the order of their relative age, oldest one first, the next oldest, and so
on to the latest (or most recent) journal file, and not to leave any gaps in the
recovery operation. The same is true when you manually recover backed-up
journal files.

9–68 After-Image Journaling and Recovery

The database contains the TSN of the last committed transaction. If there are
missing TSNs between those in the database and the first TSN of the journal
file, then Oracle Rdb does not apply the journal file and an error message is
returned. For example:

• During a restore operation, Oracle RMU automatically applies journal
files in the correct sequence if they are available, modified, and located
on disk (shown in Example 9–7). Also if you apply the first journal file
manually, recovery of the remaining journal files is automatic as long as
the remaining journal files are also available, modified, and on disk.

• During a recovery operation, if you attempt to manually apply journal
files out of sequence, the recovery operation fails and no journal files are
applied.

Database Reference Points
Consider the situation in which a row was added in a transaction in one
after-image journal file, and then the row is later deleted and recorded in the
next journal file. If the reverse happens, a row is deleted in a transaction
in one journal file and then later the row is added and recorded in the next
journal file. How does the database account for these transactions to ensure
a successful recovery operation of the database even if the storage area has
extended? And how does the database know what the last completed TSN is?

Two reference points are kept in the database:

• The after-image journal sequence number.

Each journal file or backed-up journal file contains a unique after-image
journal sequence number written in the open record. The database root file
maintains an after-image journal sequence number value. The after-image
journal sequence number in the root file identifies the journal file needed to
start rollforward operations and to ensure the correct order for applying or
rolling forward each journal file.

• The committed TSN, which indicates the highest committed TSN for the
database.

A value is maintained in the file and in the open record for each journal
file. The highest committed TSN number shows where in the journal file
or backed-up journal file to initiate the rollforward operations. Oracle Rdb
preserves the correct order of transactions by permitting journal files to
be recovered only in their proper order by after-image journal sequence
number and by comparing the highest committed TSN number in the
database root file with the highest committed TSN in the open record of
each journal file.

After-Image Journaling and Recovery 9–69

What Happens When the Database Is Restored?
When a database is recovered, the database root file uses these two reference
points to apply journal files and transactions in correct order. When the journal
file is applied to the recovered database, the after-image journal sequence
number and the highest committed TSN value for the database root file and
the journal file’s open record are compared. The journal file is recovered only
when the values are the same. If the database cannot be recovered, Oracle Rdb
either gives an error message right away or searches the entire journal file
before returning a warning message saying that no rows can be recovered. In
any case, records are not applied if the journal file is not synchronized with the
database root file.

What Happens When Records Are Recovered?
When records are applied to the restored database, the time reference (that
is, the committed TSN) in the journal file is updated as transactions are
recovered. Thus, after recovering one journal file, the database is updated and
takes on a new transaction state based on the contents of that journal file. If
this is the end of the recovery operation, the database is consistent, and you
can attach to the database. If not, recover the second journal file and so forth,
until all journal files are recovered and the database is consistent before you
attach to the database.

AIJ (Rollforward) Sequence Numbers
When you implement a fixed-size journaling system and journaling switches
over to a new journal file, the after-image journal file ‘‘AIJ sequence number’’
is automatically incremented. That is, the first journal file is assigned AIJ
sequence number 0, the second journal file is assigned AIJ sequence number 1,
and so forth.

You can display the journal sequence number using the RMU Dump After_
Journal command with the Header qualifier. Example 9–10 shows the
sequence number as it appears in the header information for the journ_3.aij
journal file.

9–70 After-Image Journaling and Recovery

Example 9–10 Performing a Journal File Switch Increments the After-Image
Journal Sequence Number

$ RMU/SET AFTER_JOURNAL /SWITCH_JOURNAL MF_PERSONNEL
$ RMU/DUMP/AFTER_JOURNAL JOURN_3

.

.

.
AIJ Sequence Number is 2

.

.

.

Note the following when you display AIJ sequence numbers:

If . . . Then . . .

The after-image journal sequence
number is 0

If this is a fixed-size journaling system, this journal file is the
first and current journal file.

The AIJ sequence number is 0 If this is an extensible-file journaling system, the journal file
is always assigned an AIJ sequence number of 0.

The AIJ sequence number is
greater than 0

This is a fixed-size journaling system. When you see a journal
sequence number that is greater than 0, you know that this is
a fixed-size journaling system, because Oracle RMU numbers
the journal files starting with the number 0.

In Example 9–10 this is the third of three journal files
associated with this database. When a journal file switches to
the third after-image journal file (in this case, JOURN_3.AIJ),
its AIJ sequence number is incremented to 2.

The AIJ sequence number is –1 The journal file is part of a fixed-size group of journals and
it is available and unmodified (this is not the current journal
file). When a journal file is backed up and reinitialized, Oracle
RMU updates the AIJ sequence number to the value –1.

To determine the AIJ sequence number for a backed-up journal file and find out
the journal file name, use the RMU Dump command with the Header qualifier
to display the journal file header or open record. Example 9–11 shows some of
the output from a sample RMU Dump command.

After-Image Journaling and Recovery 9–71

Example 9–11 Displaying the AIJ Sequence Number

$ RMU/DUMP/HEADER MF_PERSONNEL
.
.
.

$ RMU/DUMP/AFTER_JOURNAL DISK21$:[JOURNAL]BKUPJOURN_1.AIJ
.
.
.

* Dump of After Image Journal
* Filename: DISK21$:[JOURNAL]JOURN_1.AIJ;1

.

.

.
1/1 TYPE=O, LENGTH=510, TAD=13-MAY-1996 13:51:04.96

Database DISK$DB:[DB]MF_PERSONNEL.rdb;1
Database timestamp is 13-MAY-1996 13:29:57.99
Facility is "RDMSAIJ ", Version is 601.0
AIJ Sequence Number is 0 <-------
Last Commit TSN is 80 <-------
Synchronization TSN is 0
Type is Normal (unoptimized)
Open mode is Initial
Journal was backed up on 13-MAY-1996 14:17:17.94
Backup type is Streamed
I/O format is Block

.

.

.

In Example 9–11, the AIJ sequence number is 0. Therefore, the journal file
named JOURN_1.AIJ is the first after-image journal file created since the last
full and complete backup operation.

When you restore a database, informational messages display indicating
whether after-image journaling is enabled. If so, the restore operation indicates
the AIJ sequence number of the after-image journal file you should use to begin
recovery.

See Example 9–7 and refer to the Oracle RMU Reference Manual for more
RMU Recover command information and examples.

9–72 After-Image Journaling and Recovery

9.9.4 Optimizing Recovery Performance
The RMU Optimize After_Journal command provides better rollforward
performance and thus greater database availability by eliminating unneeded
rollback, duplicate journal file records, and sorting of journal file records. The
command writes the optimized journal file to disk or tape and uses the default
file extension .oaij.

The following list describes how Oracle RMU optimizes after-image journal
files:

• Elimination of journal file records from transactions that roll back

Transactions in a journal file that roll back are not applied during the
rollforward process (they are ignored). So, the journal file records from
these transactions are eliminated from the optimized journal file.

• Elimination of duplicate journal file records (duplicate journal file records
are journal file records that update the same database record)

During the rollforward of a journal file, duplicate journal file records cause
a database record to be updated multiple times. Each successive update
supersedes the previous update so that only the last or most recent update
is relevant. Therefore, all but the last update to a database record is
eliminated from an optimized journal file.

• Journal file records are ordered by physical database key (dbkey)

Ordering journal file records by physical dbkey improves I/O performance
at rollforward time for the optimized journal file.

OpenVMS
VAX

OpenVMS
Alpha

Because after-image journal file optimization uses the OpenVMS Sort/Merge
utility (SORT/MERGE) to sort journal file records, you can improve the
efficiency of the sort operation by changing the number and location of the
work files used by SORT/MERGE.

The number of work files is controlled by the RDMS$BIND_SORT_
WORKFILES logical name The allowable values are 2 through 10 inclusive,
with a default value of 2. You can specify the location of these work files with
device specifications, using the SORTWORK logical name. See the OpenVMS
documentation set and OpenVMS online Help for more information about using
SORT/MERGE.♦

If improved recovery performance and database availability are important for
your database application, you should also consider the following restrictions
before deciding if to use optimized journal files when recovering your database:

• You cannot optimize the current journal file.

After-Image Journaling and Recovery 9–73

• You cannot optimize an optimized journal file.

Note

Because an optimized journal file is not functionally equivalent to the
original journal file, the source journal file should not be discarded after
it has been optimized.

• The following restrictions apply to optimized journal files with recovery
operations:

Do not use the optimized journal files as part of by-area recovery
operations (recovery operations that use the Area qualifier on the RMU
Recover command).

Do not use the optimized journal files as part of by-page recovery
operations (recovery operations that use the Just_Corrupt qualifier on
the RMU Recover command).

Do not use the optimized journal files with the Until qualifier on the
RMU Recover command. The optimized journal file does not retain
enough of the information from the original journal file for such an
operation.

Do not use the optimized journal files with a recovery operation if
the database or any storage areas (or both) are inconsistent with the
optimized journal file.

To work around to these restrictions, use the original, unoptimized journal
file in the recovery operation instead.

• Do not optimize a journal file that contains incomplete transactions.
Incomplete transactions can occur in an after-image journal file:

If the journal file is backed up with a noquiet-point backup operation
because transactions may span journal files

If the previous journal file was backed up with a noquiet-point backup
operation

If the journal file has unresolved distributed transactions

There are no workarounds to these restrictions.

The following example shows how to optimize an after-image journal file on
disk:

$ RMU/OPTIMIZE/AFTER_JOURNAL MFPERS.AIJ MF_PERS.OAIJ

9–74 After-Image Journaling and Recovery

OpenVMS
VAX

OpenVMS
Alpha

You can optimize a journal file by reading it from disk or tape (if it has been
backed up to a tape as an OpenVMS volume) using the RMU Backup After_
Journal command with the Format=Old_File qualifier.

In either case, the journal file or existing backed-up journal files on tape
are in an RMS file format. By default, backed-up journal files are written
to tape devices in the RMS file format when a tape device is specified. You
can optimize your journal and backed-up journal files between each full and
complete backup operation for improved recovery performance if desired.

Do not delete the original set of unoptimized journal and backed-up journal
files if you must work around a particular restriction listed previously.♦

See the Oracle RMU Reference Manual for more information about tape
support and about using the RMU Optimize command.

9.10 What Causes an After-Image Journal File to Be Inaccessible
In most cases, the after-image journal file is inaccessible because the journaling
operation cannot write to the journal file. The following list describes the most
common reasons for inaccessible after-image journal files:

• Lack of adequate disk space on the device where the after-image journal
files resides.

When the after-image journal file cannot be extended, the database shuts
down. Currently, there is no mechanism available that notifies you when
disk space is exhausted.

• Someone either manually deletes the after-image journal file or powers
down the disk drive where the after-image journal file is located.

• Someone tries to create an after-image journal file in an attempt to get the
database up and running quickly.

All of these cases occur at database run time. If any one of these situations
occurs when the transaction is started, the database remains active even
though the transaction cannot continue.

The following sections describe how to recover when the journal file is lost to a
media or disk drive problem.

After-Image Journaling and Recovery 9–75

9.10.1 Recovering a Lost Extensible Journal File
Losing the journal file due to a media failure or disk drive problem is a serious
problem when you are using a single extensible journal file. The next Oracle
Rdb update by the application makes the database inaccessible because the
journal file cannot be updated with updates applied to the database. However,
Oracle Rdb handles this type of failure.

When a transaction completes normally, Oracle Rdb journals the appropriate
record (either commit or rollback) to the journal file. If a transaction
is terminated abnormally, the database recovery (DBR) process logs the
appropriate after-image journal record (either commit or abort) to the journal
file. If, for any reason, the DBR cannot log the commit or rollback record to
the journal file, the database is considered corrupt and consequently becomes
inaccessible.

When a journal file is lost, the active transactions are unable to write to
the journal file and terminate abnormally (returning the AIJTERMINATE
message). Upon abnormal transaction termination, the DBR process is
invoked. However, because the DBR process cannot write to the journal file
either, the database is closed. Any further attempts to attach to the database
fail.

To solve the problem, you must break the chain of DBR process failures by
following these steps:

1. Disable the journal file using the Disable qualifier with the RMU Set
After_Journal command.

2. From the database root file, delete the reference to the lost journal file
using the Drop=name=aijname qualifier with the RMU Set After_Journal
command.

3. Create the new journal file specification by specifying the new journal
name and file specification using the Add=(name=aijname, file=filespec)
qualifier with the RMU Set After_Journal command.

Note

Once the DBR process successfully recovers the database, Oracle
Corporation recommends that you back up the database and create a
new journal file. This is necessary because all the updates reflected
in the lost journal file are lost. As a result, you cannot use an earlier
backup file plus some combination of journal files to recover your
database. Instead, you must use the new backup file and the new
journal file to restore and recover your database.

9–76 After-Image Journaling and Recovery

9.10.2 Recovering a Lost Fixed-Size Journal File
If you are using multiple fixed-size journal files, Oracle Rdb handles the
loss of the current journal file through the automatic failover mechanism.
When the current journal file is no longer available, an automatic switchover
occurs to the next available journal file with no interruption to your database
application.

You can be notified when the journaling state changes by setting notification to
send messages to one or more operators. Use the following methods to enable
after-image journal notification:

• On OpenVMS and Digital UNIX systems, use the NOTIFY IS ENABLED
clause on the SQL ALTER DATABASE statement.

• On OpenVMS systems, use the Notify qualifier with the RMU Set After_
Journal command.

Using the notification facility allows you to investigate the reason for a journal
file switchover when it happens and take any necessary steps to correct
problems.

You can add additional journal files as an online operation only if there are
extra journal slots already available (reserved). If the journal file is lost, you
should back up your database for the reasons previously mentioned.

9.11 Displaying the Contents of a Journal File
The RMU Dump After_Journal command displays an after-image journal file
or an optimized after-image journal file in ASCII format. The RMU Recover
command uses this information to update the database if a problem occurs and
you must restore and recover your database.

Example 9–12 shows how to use the RMU Dump After_Journal command to
examine the contents of:

• After-image journal (.aij) file

• Optimized after-image journal (.oaij) file

• After-image journal cache (.ace) file

Example 9–13 includes all entries in the after-image journal file relative to
adding a new after-image journal file. The TID is 33 for this after-image
journal record; the TID is used by the database recovery process to identify
which after-image journal record belongs to which user.

After-Image Journaling and Recovery 9–77

Only one TSN, 720 is associated with this TID and the add journal file
operation. Each entry is numbered in the left column with an ordered pair
of numbers (for example, 1/1) representing the virtual block number (VBN)
and after-image journal file buffer (AIJBUF) numbers respectively. (In
Example 9–12, a seemingly empty journal file always contains an open record
when you display the contents.)

Example 9–12 Displaying the Contents of an Empty Journal File

$ RMU/DUMP/AFTER_JOURNAL JOURN_2.AIJ
*--
* Oracle Rdb V7.0-0 24-MAY-1996 16:12:20.26
*
* Dump of After Image Journal
* Filename: USER5:[TEST]JOURN_2.AIJ;1
*
*--

1/1 TYPE=O, LENGTH=510, TAD=24-MAY-1996 15:56:44.42
Database USER3:[TEST]MF_PERSONNEL.RDB;1
Database timestamp is 20-FEB-1996 15:56:09.99
Facility is "RDMSAIJ ", Version is 511.0
AIJ Sequence Number is -1
Last Commit TSN is 0
Synchronization TSN is 0
Type is Normal (unoptimized)
Open mode is Initial
Backup type is Latent
I/O format is Record

$

In Example 9–13, the journal file has recorded all the updates to the database.
(For example, updates that are recorded when you add a second journal file.)

9–78 After-Image Journaling and Recovery

Example 9–13 Displaying the Contents of a Journal File

$ RMU/DUMP/AFTER_JOURNAL MF_PERS1.AIJ
*--
* Oracle Rdb V7.0-0 24-MAY-1996 16:11:29.36
*
* Dump of After Image Journal
* Filename: USER4:[TEST]JOURN_1.AIJ;1
*
*--
1/1 ! TYPE=O, LENGTH=510, TAD=24-MAY-1996 15:24:50.34

Database USER3:[TEST]MF_PERSONNEL.RDB;1
Database timestamp is 20-FEB-1996 15:56:09.99
Facility is "RDMSAIJ ", Version is 511.0
AIJ Sequence Number is 0 "
Last Commit TSN is 696
Synchronization TSN is 0
Type is Normal (unoptimized)
Open mode is Initial #
Backup type is Active
I/O format is Record

2/2 TYPE=N, LENGTH=82, TAD=24-MAY-1996 15:56:44.83
Database Attach Information
PID=20C130EF:8, TID=33
Buffer count is 20

2/3 TYPE=D, LENGTH=426, TAD=24-MAY-1996 15:56:44.83
TID=33, TSN=720, AIJBL_START_FLG=1 $
Partial AIJBL remains

3/4 TYPE=D, LENGTH=510, TAD=24-MAY-1996 15:56:44.83
TID=33, TSN=720, AIJBL_START_FLG=0
Appending to partial AIJBL %
Partial AIJBL remains

4/5 & TYPE=D, LENGTH=154, TAD=24-MAY-1996 15:56:44.83
TID=33, TSN=720, AIJBL_START_FLG=0
Appending to partial AIJBL

CRAIJ: AIJID=1, LENGTH=1024
00000000000000080000000000000000 0000 ’................’
554F4A07FFFFFFFF000000000000000A 0010 ’.............JOU’
000000000000000000000000325F4E52 0020 ’RN_2............’
FFFFFFFF000000000000000000000000 0030 ’................’
00000000000000000000000000000000 0040 ’................’

:::: (11 duplicate lines)
575B3A34524553555F534D5642445225 0100 ’%RDBVMS_USER4:[W’
4E52554F4A5D4130364244522E445241 0110 ’ARD.RDB60A]JOURN’
000000000000000000004A49412E325F 0120 ’_2.AIJ..........’
00000000000000000000000000000000 0130 ’................’

(continued on next page)

After-Image Journaling and Recovery 9–79

Example 9–13 (Cont.) Displaying the Contents of a Journal File

:::: (12 duplicate lines)
575B3A34524553555F534D5642445227 0200 ’’RDBVMS_USER4:[W’
4E52554F4A5D4130364244522E445241 0210 ’ARD.RDB60A]JOURN’
0000000000000000313B4A49412E325F 0220 ’_2.AIJ;1........’
00000000000000000000000000000000 0230 ’................’

:::: (28 duplicate lines)
4/6 ' TYPE=C, LENGTH=18, TAD=24-MAY-1996 15:56:44.83

TID=33, TSN=720, AIJBL_START_FLG=255

$

! Entry 1/1 is the after-image journal file open or header record, TYPE=O.

" The AIJ sequence number is 0, indicating that this is the first in the series
of journal files for this database.

The Open Mode can indicate these conditions:

• Initial—Oracle RMU creates an after-image journal file either when
the after-image journal file is enabled or the previous RMU Backup
After_Journal command included the Quiet_Point qualifier

• Continuation—Oracle RMU spans an after-image journal file onto
another journal file because the previous after-image journal file was
backed up using the Noquiet_Point qualifier

$ After-images of updated storage segments are journaled in Data records. A
series of segment updates is called an AIJ Block ‘‘AIJBL’’.

% The AIJ disk record AIJBUF is the 510-byte (or less) record written to
the disk file. The AIJ buffer record AIJBL is the actual record containing
update information to the database. It can require several AIJBUF records
to contain a single AIJBL buffer if the database update consists of a large
number of bytes.

The RMU Dump After_Journal display might display any of these
messages:

• Continuation partial AIJBL ignored

Ignore nonstarting AIJBLs. Oracle RMU write this message when the
start of the AIJBL occurs in a previous after-image journal file (and the
file continues in this journal file).

9–80 After-Image Journaling and Recovery

• Appending to partial AIJBL

This message indicates that the journaling I/O operation is appending
to a remaining partial AIJBL buffer; this AIJBUF buffer contains only
part of an AIJBL. The start of the AIJBL buffer is written in a prior
AIJBUF. The complete AIJBL contains all the data-update information
and may span two or more AIJBUF buffers.

• Resizing maximum AIJBL size to !UL bytes

Readjusts the AIJBL buffer size and allocates virtual memory if
necessary. (You can run out of PGFLQUOTA or VM.) The logic is as
follows:

Appends the new AIJBL to any remaining old AIJBL buffer

Loops through the AIJBL buffer, writing out any complete records

Shifts the remaining data down, and adjusts the remaining length

Returns a message if a partial AIJBL buffer remains

For example, the message ‘‘Partial AIJBL remains’’ indicates that
the remainder of the AIJBL buffer did not fit in this AIJBUF and
is continued in the following AIJBUF buffer.

& Entry 4/5 shows the information displayed when a new journal file is added
to the journaling system.

' Entry 4/6 is a commit record for TID 33, TSN 720.

Finally, the output from an RMU Dump After_Journal command might show
the following message:

Transactions from AIJ sequence number nn may span into this journal file

This message indicates the last after-image journal file that contains a quiet
point. During recovery, the recovery operation requires the after-image journal
files starting with the (nn) sequence number. The recovery operation requires
these after-image journal files because any single after-image journal file with
an AIJ sequence number subsequent to (or greater than) the (nn) sequence
number might contain only a partial transaction. No quiet-point backup
of a single after-image journal file can have transactions spanning a single
after-image journal file.

After-Image Journaling and Recovery 9–81

9.12 Example of Database Backup, Recover, and Restore
Journaling Operations

This section uses Example 9–14 to show how to modify a database from a
single extensible journal file to a set of three after-image journal files and
coordinate the use of the journal file and journal backup files with a full
database backup operation.

See Section 8.7 for examples of restoring and recovering database pages that
show how values change for entries in the corrupt page table (CPT) as pages
are restored and recovered.

Example 9–14 Using Journal Files and Backup Files for a Full Database
Backup Operation

$! Create the directory structure for the database files.
$
$ CREATE/DIRECTORY DISK11$:[DB.JOURNAL]
$ CREATE/DIRECTORY DISK12$:[DB.JOURNAL]
$ CREATE/DIRECTORY DISK13$:[DB.JOURNAL]
$ CREATE/DIRECTORY DISK21$:[DB.BKUP_JOURNAL]
$ CREATE/DIRECTORY DISK22$:[DB.BKUP_JOURNAL]
$ CREATE/DIRECTORY DISK23$:[DB.BKUP_JOURNAL]
$
$! Define system logical names for the name of each .aij
$! and backup .aij file. Make sure the journal file, backup
$! journal file, and database files are on different disks.
$!
$ DEFINE/SYSTEM JOURN_1 -
_$ "DISK11$:[DB.JOURNAL]JOURN_1.AIJ"
$ DEFINE/SYSTEM JOURN_2 -
_$ "DISK12$:[DB.JOURNAL]JOURN_2.AIJ"
$ DEFINE/SYSTEM JOURN_3 -
_$ "DISK13$:[DB.JOURNAL]JOURN_3.AIJ"
$ DEFINE/SYSTEM BKUP_JOURN_1 -
_$ "DISK21$:[DB.BKUP_JOURNALS]BKUP_JOURN_1.AIJ"
$ DEFINE/SYSTEM BKUP_JOURN_2 -
_$ "DISK22$:[DB.BKUP_JOURNALS]BKUP_JOURN_2.AIJ"
$ DEFINE/SYSTEM BKUP_JOURN_3 -
_$ "DISK23$:[DB.BKUP_JOURNALS]BKUP_JOURN_3.AIJ"

(continued on next page)

9–82 After-Image Journaling and Recovery

Example 9–14 (Cont.) Using Journal Files and Backup Files for a Full
Database Backup Operation

$!
$! Create the directory structure for the database backup (.rbf) files.
$
$ CREATE/DIRECTORY DISK30$:[DB.BACKUPS]
$
$! Define a system logical name for the name of the
$! database backup disk device and directory.
$!
$ DEFINE/SYSTEM RDB_BACKUPS DISK30$:[DB.BACKUPS]
$
$! Create the directory structure for the database root (.rdb) file.
$
$ CREATE/DIRECTORY DISK1$:[DB.ROOTS]
$
$! Define a SYSTEM logical name for the name of the
$! backup disk device and directory.
$!
$ DEFINE/SYSTEM DB_DISK DISK1$:[DB.ROOTS]

$! You can back up the database after you enable journaling. Use the
$! RMU Set After_Journal command to enable after-image journaling.
$! The journal file is given the logical name PERS$JOUR.
$! Set up a three-file, fixed-size journaling system.
$!
$ RMU/SET AFTER_JOURNAL/ENABLE /RESERVE=4 /NOTIFY=(OPER1) -
_$ /ADD=(NAME=JOURN_1, FILE=JOURN_1, BACKUP_FILE=BKUP_JOURN_1, ALLOC=512) -
_$ /ADD=(NAME=JOURN_2, FILE=JOURN_2, BACKUP_FILE=BKUP_JOURN_2, ALLOC=512) -
_$ /ADD=(NAME=JOURN_3, FILE=JOURN_3, BACKUP_FILE=BKUP_JOURN_3, ALLOC=512) -
_$ MF_PERSONNEL
$!
$! Opening the database manually prevents a user from
$! making changes while a backup operation is running.

$! Open the database with restricted access to prevent users with
$! insufficient privileges from accessing the database.
$!
$ RMU/OPEN/ACCESS=RESTRICTED DB_DISK:MF_PERSONNEL
$!
$! Manually switch the journal files.
$! Manually back up the JOURN_1 .AIJ file to disk.
$!
$ RMU/SET AFTER_JOURNAL /SWITCH_JOURNAL DB_DISK:MF_PERSONNEL
$ RMU/BACKUP/AFTER_JOURNAL/LOG DB_DISK:MF_PERSONNEL BKUP_JOURN_1

(continued on next page)

After-Image Journaling and Recovery 9–83

Example 9–14 (Cont.) Using Journal Files and Backup Files for a Full
Database Backup Operation

$!
$! Make a full backup copy of the mf_personnel database.
$! This command ensures that you have a copy of the database
$! at a known time, in an uncorrupt state.
$!
$ RMU/BACKUP/ONLINE/LOG DB_DISK:MF_PERSONNEL.RDB -
_$ RDB_BACKUPS:MF_PERSONNEL_FULL.RBF
$!
$! The Log qualifier displays the results of the backup operation.
$! Now you can use SQL statements with after-image journaling
$! enabled.
$!
$! Close the database, so you can open it again with unrestricted
$! access.
$!
$ RMU/CLOSE DB_DISK:MF_PERSONNEL
$
$! The RMU Open command is required to open the database as
$! unrestricted and because the database was previoulsy defined
$! with the SQL OPEN IS MANUAL statement.
$! Opening the database manually improves performance.
$!
$ RMU/OPEN/ACCESS=UNRESTRICTED DB_DISK:MF_PERSONNEL

$ SQL
SQL> --
SQL> -- Invoke the database and perform some data
SQL> -- definition and storage.
SQL> --
SQL> ATTACH ’FILENAME DB_DISK:MF_PERSONNEL’;
SQL> SET TRANSACTION READ WRITE;
SQL> CREATE DOMAIN NEWFIELD TEXT (10);
SQL> CREATE TABLE TABLE1
cont> (NEWFIELD NEWFIELD_DOM);
SQL> COMMIT;

(continued on next page)

9–84 After-Image Journaling and Recovery

Example 9–14 (Cont.) Using Journal Files and Backup Files for a Full
Database Backup Operation

SQL> SET TRANSACTION READ WRITE;
SQL> INSERT T IN TABLE1 USING
cont> T.NEWFIELD = "data";
SQL> COMMIT;
SQL>

.

.

.

Assume a system failure occurred at this point in Example 9–14 and corrupted
your original database. Delete the old database files and rebuild the database,
using the procedure shown in Example 9–15.

Example 9–15 Restoring, Verifying, and Recovering a Database

$! You know that the backed up copy of the database is
$! not corrupt. You can use the RMU Verify command on the restored
$! database to be sure that this is the case. The RMU Restore command
$! automatically (by default) attempts to apply all available on-disk
$! journal files; if you regularly back up the journal files, you must
$! manually apply each backed-up journal file followed by any on-disk
$! journal files. In this case, there is one backed-up journal file and
$! one on-disk journal file. Restore both the .rda and .rdb files.
$! The restore operation restores after-image journal file
$! state information for all available journal files. After restoring
$! JOURN_1 the operation reports that AIJ sequence numbers are
$! incompatible. This is expected because JOURN_1 was backed up and
$! has an AIJ sequence number of -1. JOURN_2 has not yet been
$! modified. After-image journaling was active when the database was backed
$! up and this message refers to JOURN_3 as being the current journal file.

(continued on next page)

After-Image Journaling and Recovery 9–85

Example 9–15 (Cont.) Restoring, Verifying, and Recovering a Database
$!
$ RMU/RESTORE/NORECOVERY/LOG /ROOT=NEW$DISK:[DB.ROOTS] -
_$ RDB_BACKUPS:MF_PERSONNEL_FULL.RBF
%RMU-I-RESTXT_04, Thread 1 uses devices NEW$DISK:
%RMU-I-AIJRSTBEG, restoring after-image journal "state" information
%RMU-I-AIJRSTJRN, restoring journal "JOURN_1" information
%RMU-I-AIJRSTINC, after-image journal sequence numbers are incompatible
%RMU-I-AIJRSTDEL, journal "JOURN_1" filename
"DISK11$:[DB.JOURNAL]JOURN_1.AIJ;1" has been removed
%RMU-I-AIJRSTJRN, restoring journal "JOURN_2" information
%RMU-I-AIJRSTNMD, journal has not yet been modified
%RMU-I-AIJRSTSUC, journal "JOURN_2" successfully restored from file
"DISK12$:[DB.JOURNAL]JOURN_2.AIJ;1"
%RMU-I-AIJRSTEND, after-image journal "state" restoration complete
%RMU-I-RESTXT_00, Restored root file DB_DISK:MF_PERSONNEL.RDB;1

.

.

.
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU-I-AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0
%RMU-I-AIJRECBEG, recovering after-image journal "state" information
%RMU-I-AIJRSTAVL, 1 after-image journal available for use
%RMU-I-LOGMODSTR, activated after-image journal "JOURN_2"
%RMU-I-LOGMODFLG, enabled after-image journaling
%RMU-W-DOFULLBCK, full database backup should be done to ensure future
recovery
%RMU-I-AIJRECEND, after-image journal "state" recovery complete
$
$! The restore operation messages indicate that the
$! JOURN_1 is now the current journal and journaling is enabled.
$!
$ RMU/VERIFY/ALL/LOG NEW$DISK:[DB.ROOTS]MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-I-ENDROOVER, completed root verification
%RMU-I-BGNVCONST, beginning verification of constraints for database
%RMU-I-ENDVCONST, completed verification of constraints for database
%RMU-I-DBBOUND, bound to database "DB_DISK:MF_PERSONNEL.RDB;1"
%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU-I-BGNAIPVER, beginning AIP pages verification
%RMU-I-ENDAIPVER, completed AIP pages verification

(continued on next page)

9–86 After-Image Journaling and Recovery

Example 9–15 (Cont.) Restoring, Verifying, and Recovering a Database
%RMU-I-OPENAREA, opened storage area EMPIDS_OVER for protected retrieval
%RMU-I-OPENAREA, opened storage area EMPIDS_MID for protected retrieval
%RMU-I-OPENAREA, opened storage area EMPIDS_LOW for protected retrieval
%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-ENDABMSPM, completed ABM pages verification

.

.

.
%RMU-S-ENDVERIFY, elapsed time for verification : 0 01:40:32.03
$! Applying journal files:
$!
$! Use the RMU Recover command to roll forward the database changes
$! contained in the backed-up .aij file, BKUP_JOURN_1, which is the
$! system logical name for DISK21$:[DB.BKUP_JOURNAL]BKUP_JOURN_1.AIJ.
$! Next apply the on-disk journal file JOURN_2, which is the system
$! logical name for DISK12$:[DB.JOURNAL]JOURN_2.AIJ.
$! Refer to the new location of the database root (.rdb) file
$! as NEW$DISK:[DB.ROOTS]MF_PERSONNEL.rdb.
$! The journal files must now be applied in their proper order.
$! Journal files can be specified as a list, but be sure they
$! are in the exact order in which they need to be applied.
$! In this case, BKUP_JOURN_1 must be applied first; it is AIJ
$! sequence 0. It is the backed-up JOURN_1 file.
$! Recall, that JOURN_2 was not modified, it was AIJ sequence 1
$! and is ignored for the purposes of recovery. The recovery
$! operation knows that JOURN_3 must be applied next because
$! it is AIJ sequence 2.
$!
$ RMU/RECOVER/TRACE /ROOT=NEW$DISK:[DB.ROOTS]MF_PERSONNEL.RDB "BKUP_JOURN_1"
%RMU-I-LOGRECSTAT, transaction with TSN 88 ignored
%RMU-I-RESTART, restarted recovery after ignoring 1 committed transaction
%RMU-I-LOGRECSTAT, transaction with TSN 96 committed
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECSTAT, transaction with TSN 112 committed
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-AIJVNOSYNC, AIJ file DISK12:[DB.JOURNAL]JOURN_2.AIJ;1
synchronized with database
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 2

(continued on next page)

After-Image Journaling and Recovery 9–87

Example 9–15 (Cont.) Restoring, Verifying, and Recovering a Database

$
$ RMU/RECOVER/TRACE /ROOT=NEW$DISK:[DB.ROOTS]MF_PERSONNEL.RDB "JOURN_3"
%RMU-I-LOGRECSTAT, transaction with TSN 128 committed
%RMU-I-LOGRECSTAT, transaction with TSN 129 committed
%RMU-I-AIJONEDONE, AIJ file sequence 2 roll-forward operations completed
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-AIJVNOSYNC, AIJ file DISK12$:[DB.JOURNAL]JOURN_2.AIJ;1
synchronized with database
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence
number needed will be 3
$!
$! If you need to apply more journal files to the same
$! database, you can also repeat the steps from the label
$! ’Applying journal files’ and specify the full file
$! specification, including the version number of the
$! .aij files to be applied to the new database. An
$! informational message displays indicating the next
$! rollforward sequence number of the next .aij file
$! needed in the recovery process.
$!
$! After recovering the database, verify it, and then do
$! a full database backup operation.

See the Oracle RMU Reference Manual for more examples of restoring and
recovering databases.

During the database recovery, temporary files are written to your default
directory. These files are deleted when the recovery operation completes.

The default file protection for the after-image journal file permits the system
to read and write and the owner to read (S:RW,O:R). You can preserve this
protection by using the RMU Backup After_Journal command to save copies of
the journal files on tape or a disk structure.

Once you have fully restored and recovered the database, verify it, and if
verification is successful, you should create a backup copy of the database
by using the RMU Backup command after you enable after-image journaling
again. This way you ensure that if any update transactions change the state
of the database after the backup operation begins, the journal file records that
activity.

9–88 After-Image Journaling and Recovery

10
Recovery-Unit Journaling and Recovery

When you start using your database, Oracle Rdb automatically begins logging
a recovery-unit journal for each user’s update transactions. The recovery-unit
journal is sometimes called a before-image journal because it records an image
of the data before the transaction makes changes to it.

If a user enters an SQL ROLLBACK statement or if a user’s transaction is
terminated abnormally, Oracle Rdb uses the recovery-unit journal file to roll
back an update transaction.

See Chapter 9 for information about after-image journaling.

10.1 The Recovery-Unit Journal File
The recovery-unit journal keeps a record of any changes to the database
definitions or the data itself. When the user decides to roll back a transaction,
Oracle Rdb uses the entries in the recovery-unit journal to undo changes
that were written to the database. When a system or software failure occurs
and database access ceases, Oracle Rdb uses all recovery-unit journal files to
complete the recovery when the database comes back on line.

Because there are as many recovery-unit journal files as there are active users
of the database, Oracle Rdb must be able to access all recovery-unit journal
files before the recovery is marked as complete. If a single recovery-unit
journal file cannot be accessed, the database is corrupt and Oracle Rdb returns
an error message.

The recovery process signals an error if the database experiences an incomplete
automatic recovery, using the recovery-unit journal files. Incomplete recovery
of this type can result when Oracle Rdb cannot locate all recovery-unit journal
files associated with this database.

Recovery-unit journaling is automatic and is not controlled by the user.
Oracle Rdb applies all recovery-unit journal entries whenever they are needed
after a system failure. For example, when the node to which you are logged in
fails and comes back on line, Oracle Rdb automatically applies all recovery-unit

Recovery-Unit Journaling and Recovery 10–1

journal files to the database from a different node before you can access the
database again.

10.1.1 Directory Location
After you install Oracle Rdb, it automatically creates a recovery-unit journal
file for each user the first time the user updates the database.

Table 10–1 describes how Oracle Rdb determines the default location for
recovery-unit journal files.

Table 10–1 Default Location for Recovery-Unit Journal Files

Operating
System Default Location

Digital
UNIX

The database directory

The recovery-unit journal files created in this directory are owned by the individual users. You can change
the default location by defining the RDB_RUJ configuration parameter in the rdb.conf file.

For example, assume user Jones creates an mf_personnel database that resides in the database directory
/usr/jones/mf_personnel.rdb. The first time that Jones updates the personnel database, Oracle Rdb creates
a recovery-unit journal (.ruj) file in the same directory. The first entry in the following directory example
shows the recovery-unit journal:

$ ls -l /usr/jones/mf_personnel.rdb
-rwx------ . . . rdb_system$000163682534.ruj 1
-rwx------ . . . rdb_system.rdb
-rwx------ . . . rdb_system.snp

1Oracle Rdb names recovery-unit journal files using the database name and a timestamp-generated number. This
naming convention prevents multiple versions of recovery-unit journal files from using the same file name.

(continued on next page)

10–2 Recovery-Unit Journaling and Recovery

Table 10–1 (Cont.) Default Location for Recovery-Unit Journal Files

Operating
System Default Location

OpenVMS A top-level directory called RDM$RUJ.DIR

Oracle Rdb creates the [RDM$RUJ] directory automatically the first time a user updates the database.
The [RDM$RUJ] directory is located on the user’s login (SYS$LOGIN) device and is owned by the
[SYSTEM] identifier.

Note: Do not use the SYSTEM account to perform the first database update. This is because the login
(SYS$LOGIN) information for the SYSTEM user account points to a local directory (SYS$SYSROOT) on
an individual node and the SYSTEM account might be defined differently on each node. Therefore, the
Oracle Rdb monitor process on one node (for example, NODE_A) might not be able to access the RDM$RUJ
directory on any other node. This results in an inaccessible database.

You can change the default location of the recovery-unit journal by:

• Defining the RDM$RUJ logical name in the LNM$SYSTEM logical name table

• Creating the RDM$RUJ directories using the DCL command CREATE/DIRECTORY

For example, assume that user Smith’s top-level directory is DISK1:[SMITH], and user Jones’ top-level
directory is DISK2:[JONES]. If user SMITH is the first updater of any database on the system, then
Oracle Rdb creates a DISK1:[RDM$RUJ] directory. Similarly, if user JONES is the first updater of the
same or a different database, then Oracle Rdb creates a DISK2:[RDM$RUJ] directory. Once created, these
directories do not change. For example:

$ DIRECTORY DISK1:[RDM$RUJ]
MF_PERSONNEL$009733A005D2E400.RUJ;11
MF_PERSONNEL$009884CC221ADB80.RUJ;1

1Oracle Rdb names recovery-unit journal files using the database name and a timestamp-generated number. This
naming convention prevents multiple versions of recovery-unit journal files from using the same file name.

Oracle Rdb automatically creates recovery-unit journal files in a central,
top-level directory to:

• Avoid problems with recovery-unit journal files scattered in various users’
directories

• Prevent recovery-unit journal files from being deleted accidentally

Because Oracle Rdb must be able to locate all recovery-unit journal files in
the event of a failure, you must ensure that the directories where Oracle Rdb
creates recovery-unit journal files is on a commonly accessible disk.

The Oracle Rdb monitor process on any given node must be able to locate
all recovery-unit journal files on every other node in the cluster to perform
recovery operations. For example, when your database operates in a
VMScluster environment, you must ensure that all devices that contain
recovery-unit journal files are served to all nodes in the cluster.

Recovery-Unit Journaling and Recovery 10–3

OpenVMS
VAX

OpenVMS
Alpha

The [RDM$RUJ] directory is located on the user’s login (SYS$LOGIN) device
and is owned by the [SYSTEM] identifier. To create this [RDM$RUJ] top-
level directory, the [SYSTEM] identifier must have write (W) and execute
(E) privileges. You can create access control lists (ACLs) on the RDM$RUJ
directory; Oracle Rdb controls privileges that users need to create or delete
recovery-unit journal files. The recovery-unit journal files created in this
directory are owned by the individual users. The following exceptions apply to
this rule:

• If the user does not have the proper access privileges to determine the user
identification code of the directory, Oracle Rdb creates the recovery-unit
journal file with the UIC of the user.

• If the recovery-unit journal file is created in the common recovery-unit
journal directory (device-name:[RDM$RUJ]), the recovery-unit journal file
always has the UIC of the directory.

♦

When you use a common directory for recovery-unit journal files and multiple
users are performing database update activity, you might experience disk
input/output (I/O) contention on the device that contains the common directory.
Because Oracle Rdb must write before-image versions of all updated rows
before any transaction terminates, this I/O activity can exceed the device’s
capabilities to service all I/O requests.

When this happens, the I/O requests are kept in order (queued) until they can
be serviced. Such a state can slow database performance. Therefore, if heavy
concurrent database access is likely, you can decide about the best location for
each user’s recovery-unit journal file. You can also set up a systemwide login
procedure that determines the recovery-unit journal location for each user
logging in to the system. In this way, you can distribute I/O operations across
several disk structures and ensure good database performance during heavy
use.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information.

10.1.2 Recovery for Update Transactions
A typical Oracle Rdb transaction (INSERT, UPDATE, DELETE) is performed
between an SQL SET TRANSACTION statement or the first executable SQL
statement, and a COMMIT or ROLLBACK statement. When a transaction
executes a ROLLBACK statement, Oracle Rdb rolls back the incomplete
transaction within the context of the recovery unit’s process, replacing the
before-images in that process’ recovery-unit journal file into the database.

10–4 Recovery-Unit Journaling and Recovery

An update transaction that does not terminate with a COMMIT or ROLLBACK
statement is considered to terminate abnormally. Abnormal termination occurs
as a result of many possible events. The following table describes many of
the events, whether the transaction is rolled back or committed, and whether
Oracle Rdb creates a recovery process as a result of the event:

Event
Commit or
Rollback Recovery?

Standard SQL image rundown COMMIT No

DCL Ctrl/Y EXIT command (where the user enters Ctrl/Y
followed by the DCL EXIT command)

ROLLBACK No

DCL Ctrl/Y STOP command (where the user enters Ctrl/Y
followed by the DCL STOP command)

ROLLBACK Yes

DCL STOP/ID command ROLLBACK Yes

Oracle RMU Close command with the Abort=Delprc
qualifier

ROLLBACK Yes

Oracle RMU Close command with the Abort=Forcex
qualifier

ROLLBACK Yes

Fatal program error ROLLBACK Yes

Hardware or operating system failure ROLLBACK Yes

QUIT command in interactive SQL ROLLBACK Yes

EXIT command in interactive SQL Commit †

†See the Oracle Rdb7 SQL Reference Manual for more information.

For the situations in which Oracle Rdb creates recovery processes, the recovery
process immediately rolls back the transaction. In cases of complete system
failure, the Oracle Rdb monitor process creates one detached database recovery
(DBR) process for each incomplete update transaction on the computer system.
The database root file keeps track of these detached DBR processes. Oracle
Rdb initiates the recovery procedure the next time the database is accessed
after the system starts up.

OpenVMS
VAX

OpenVMS
Alpha

In a cluster with multiple nodes accessing the same database, recovery
processes are initiated on a surviving node. Thus, database activity continues
in a cluster despite loss of a single node.♦

Recovery-Unit Journaling and Recovery 10–5

10.2 Improving Performance of the Automatic Recovery Process
If there is a system or process failure, Oracle Rdb initiates an automatic
recovery process that uses the recovery-unit journal file. The number of
database recovery (DBR) buffers is determined from the largest of any of the
following values:

• RDM$BIND_BUFFERS logical name

• NUMBER OF BUFFERS IS argument (SQL or RDO)

• NUMBER OF RECOVERY BUFFERS IS argument (SQL or RDO)

For most failure scenarios, this strategy provides the DBR process with the
same number of recovery buffers as the process being recovered. It also allows
the DBA to specify a larger value, if desired.

Note

If a node failure causes Oracle Rdb to initiate the DBR process on a
node other than the one where the process is failing, the DBR process
cannot access the working set extent (WSEXTENT) quota from the
failing process. This is because the process (on the failing node) no
longer exists. Because the DBR process is unable to inherit the failing
process’ WSEXTENT value, it defaults to 8192 pages (databases
running an Oracle Rdb software release prior to Oracle Rdb Version 7.0
default to 512 pages).

10.2.1 Setting the Number of Database Buffers

OpenVMS
VAX

OpenVMS
Alpha

The default value for the NUMBER OF RECOVERY BUFFERS IS parameter
is 40 buffers. To allocate a specific number of database buffers, specify a value
using the NUMBER OF RECOVERY BUFFERS IS option on any of these SQL
statements:

• SQL CREATE DATABASE

• SQL ALTER DATABASE

• SQL IMPORT

See the full syntax diagrams for these statements in the Oracle Rdb7 SQL
Reference Manual.

10–6 Recovery-Unit Journaling and Recovery

If you have a large, multifile database and you are working on a system with
a large amount of memory, Oracle recommends that you specify between 100
and 200 buffers for the NUMBER OF RECOVERY BUFFERS IS option. This
range provides adequate recovery in most circumstances. However, you should
experiment to determine the optimal number of buffers for your particular
application.

The working set extent parameter, WSEXTENT, must be large enough to
hold all these buffers in memory in addition to other things mapped when the
database is invoked. A high WSEXTENT value results in faster recovery time.
However, if the number of buffers is too large for the specified WSEXTENT
value, the system may be forced to perform virtual paging of the buffer pool.
Slow performance time results because the operating system must perform
virtual paging of the buffer pool in addition to reading database pages.

Displaying the Current Number of Recovery Buffers
Use the RMU Dump Header command to display the contents of the database
file header, including the current value for the NUMBER OF RECOVERY
BUFFERS parameter.

Displaying the Current Value of WSEXTENT
To check the value of the WSEXTENT parameter for the recovery process,
run the OpenVMS Authorize (AUTHORIZE) utility and specify the SHOW
command and the identifier for the recovery process.

Check the WSEXTENT value and use the SET command to increase it, if
necessary.

Displaying and Setting Other Working Set Parameters
For a user process, you can use the DCL command, SHOW WORKING_SET,
to display the current working set parameters, WSDEFAULT, WSQUOTA, and
WSEXTENT. Then, use the DCL command, SET WORKING_SET, to adjust
values for these three parameters for the user’s process.

10.2.2 Adjusting the Number of Recovery Buffers
When you select a value for the NUMBER OF RECOVERY BUFFERS IS
option that is between 100 to 200 buffers, and your buffer size is 12 pages to
handle storage areas with page sizes of 2, 3, and 4 blocks per page in your
multifile database, then the total number of pages needed for just the number
of recovery buffers is between 1200 and 2400 pages.

In this case, be sure the WSEXTENT value is larger than 1200 to 2400 pages
to ensure an adequate recovery time for your system. Use the NUMBER OF
RECOVERY BUFFERS IS option to increase the number of buffers allocated to
the recovery process, as shown in Example 10–1.

Recovery-Unit Journaling and Recovery 10–7

Example 10–1 Changing the Number of Recovery Buffers Allocated to the
Recovery Process

SQL> ALTER DATABASE FILENAME ’DISK2:[USER.TEST]MF_PERSONNEL’
cont> NUMBER OF RECOVERY BUFFERS IS 150;

♦

10.3 Displaying the Contents of an .ruj File
In Example 10–3, EMPLOYEE_ID 165 (Terry Smith’s) row is deleted from
the EMPLOYEES table. Before the operation is committed, you can display
the contents of the recovery-unit journal file by using the Recovery_Journal
qualifier on the RMU Dump command, as shown in Example 10–2. Note,
however, that the recovery-unit journal file is created and is empty because the
results of deleting this row have not been written back to disk yet; the updates
are still in the buffer.

In Example 10–3:

• VBN refers to the virtual block number in which the recovery-unit journal
file entries are placed

• Sequence number indicates the order in which journal entries are
generated

• JFA refers to the journal file address

• TSN refers to the transaction sequence number

To force Oracle Rdb to write the results of this deletion to the recovery-unit
journal file, you can either:

• Perform additional update operations

• Preset the following logical name or configuration parameter to a small
number, such as 2, and perform the operation again:

RDM$BIND_BUFFERS logical name

RDB_BIND_BUFFERS configuration parameter

Either action forces database pages to be written to disk as other database
pages are requested for updating.

10–8 Recovery-Unit Journaling and Recovery

Example 10–2 Displaying the Contents of an Empty Recovery-Unit Journal File

$ RMU/DUMP/RECOVERY_JOURNAL DUA1:[RDM$RUJ]MF_PERSONNEL$0097232208D5D240.RUJ
*--
* Oracle Rdb V7.0-0 7-SEP-1995 11:09:11.45
*
* Dump of Recovery Unit Journal
* Filename: DUA1:[RDM$RUJ]MF_PERSONNEL$0097232208D5D240.RUJ;1
*
*--

VBN 1 of 102

Recovery unit journal file sanity check passed ("RUJ_FILE")
Database rootfile is DUA1:[ORION]MF_PERSONNEL.RDB;1
Journal file was created by process 20211574:1

In Example 10–3, the recovery-unit journal file contains some results of
deleting EMPLOYEE_ID 165 or Terry Smith’s row. When the row was deleted,
it was also removed from all the indexes for which the EMPLOYEE_ID column
was used as the column on which the index was defined.

Recovery-Unit Journaling and Recovery 10–9

Example 10–3 Displaying the Contents of a Recovery-Unit Journal File

$ RMU/DUMP/RECOVERY_JOURNAL DUA1:[RDM$RUJ]MF_PERSONNEL$0097232208D5D240.RUJ
*--
* Oracle Rdb V7.0-0 7-JUN-1996 17:36:01.07
*
* Dump of Recovery Unit Journal
* Filename: DUA1:[RDM$RUJ]MF_PERSONNEL$0097232208D5D240.RUJ;1
*
*--

VBN 1 of 102

Recovery unit journal file sanity check passed ("RUJ_FILE")
Database rootfile is DUA1:[ORION]MF_PERSONNEL.RDB;1
Journal file was created by process 20211574:1

VBN 2 of 102, Sequence number 1, Transaction number 544, AIJ checkpoint TSN 251

+---+
| This JFA 2:0 Record sequence number 1 |
| Prior JFA 0:0 Previous TSN was 16 |
| Modified segment 63:2:1 with length of 76 bytes |
+---+

001A 0000 line 1: record type 26
00 0001 0002 1 byte in 0 sets/dynamic items

.... 71 bytes of static data
0420886874696D53353631303000010B 0005 data ’...00165Smith. .’
6E655420303231440D20847972726554 0015 data ’Terry. .D120 Ten’
75726F636F684307209F2E7244207962 0025 data ’by Dr.. .Chocoru’
4932C0004D3731383330484E12208B61 0035 data ’a. .NH03817M.À2I’

00F032006B0E77 0045 data ’w.k.2.’
+---+
| This JFA 2:116 Record sequence number 2 |
| Prior JFA 2:0 Previous TSN was 64 |
| Modified segment 77:3:5 with length of 30 bytes |
+---+

0020 0000 line 5: record type 32
00 0001 0002 1 byte in 0 sets/dynamic items

.... 25 bytes of static data
414207B4455441423536313030000113 0005 data ’...00165BATE.BA’

E000208A7374724120 0015 data ’ Arts. .à’

(continued on next page)

10–10 Recovery-Unit Journaling and Recovery

Example 10–3 (Cont.) Displaying the Contents of a Recovery-Unit Journal File

+---+
| This JFA 2:174 Record sequence number 3 |
| Prior JFA 2:116 Previous TSN was 72 |
| Modified segment 50:770:1 with length of 208 bytes |
+---+

.... total B-tree node size: 208
002A 2004 0000 line 1: index node for set 42

0000 FFFFFFFF FFFF 0004 owner 0:-1:-1
0070 000C 112 bytes of DBKs

004D 00000003 0005 0010 duplicate record 77:3:5
004D 00000004 0005 0018 duplicate record 77:4:5
004D 00000004 000C 0020 duplicate record 77:4:12
004D 00000005 0007 0028 duplicate record 77:5:7
004D 00000005 000B 0030 duplicate record 77:5:11
004D 00000005 000C 0038 duplicate record 77:5:12
004D 00000006 000D 0040 duplicate record 77:6:13
004D 00000006 000E 0048 duplicate record 77:6:14
004D 00000006 0012 0050 duplicate record 77:6:18
004D 00000007 0008 0058 duplicate record 77:7:8
004D 00000008 0001 0060 duplicate record 77:8:1
004D 00000008 0008 0068 duplicate record 77:8:8
004D 00000008 0009 0070 duplicate record 77:8:9
004D 00000008 000A 0078 duplicate record 77:8:10

00000000000000000000000000000000 0080 unused ’................’
:::: (3 duplicate lines)

FFFF FFFFFFFF FFFF 00C0 next node: -1:-1:-1
0000000000000000 00C8 MBZ ’........’

VBN 3 of 102, Sequence number 4, Transaction number 544, AIJ checkpoint TSN 251

... Data continued from previous block ...

(continued on next page)

Recovery-Unit Journaling and Recovery 10–11

Example 10–3 (Cont.) Displaying the Contents of a Recovery-Unit Journal File

+---+
| This JFA 2:410 Record sequence number 4 |
| Prior JFA 2:174 Previous TSN was 72 |
| Modified segment 50:774:0 with length of 430 bytes |
+---+

.... total B-tree node size: 430
0032 2003 0000 line 0: index node for set 50

0000 FFFFFFFF FFFF 0004 owner 0:-1:-1
00FF 000C 255 bytes of entries
8200 000E level 1, full suffix

00 06 0010 6 bytes stored, 0 byte prefix
343631303000 0012 key ’.00164’

FFCE 00000306 0001 0018 duplicate node 50:774:1
05 01 001C 1 byte stored, 5 byte prefix

3631303000 pfx ’.0016’
35 001E key ’5’

4D46 60 001F pointer 77:3:5
05 01 0022 1 byte stored, 5 byte prefix

3631303000 pfx ’.0016’
36 0024 key ’6’

.

.

.

10–12 Recovery-Unit Journaling and Recovery

11
Displaying Root Files, Storage Areas, and

Snapshot Files

Understanding how Oracle Rdb stores records in the database can help you
maintain and fine-tune a database to better suit your applications. This
chapter shows you how to use the RMU Dump command to display and
interpret the contents of the database files shown in the following table:

File Type File Extension

Root files .rdb (For single-file databases, this file includes storage areas)

Storage area files .rda

Snapshot files .snp

The discussions in this chapter assume that you already understand basic
database concepts about data storage (such as single-file and multifile
databases) and database elements (such as tables, indexes, and domains). You
might find it helpful to refer to the Oracle Rdb7 Guide to Database Design and
Definition for background information.

See also Chapter 9 for information about using the RMU Dump command to
display information about after-image journal (.aij) and recovery-unit journal
(.ruj) files.

11.1 Using the RMU Dump Command
Using the RMU Dump command and the qualifiers shown in the following
table, you can display internal page formats for database storage areas and
snapshot files:

Displaying Root Files, Storage Areas, and Snapshot Files 11–1

Command Description

RMU Dump Area Displays pages from data storage files and lets you examine pages in
data storage areas.

RMU Dump Larea Displays pages from one or more logical areas in data storage files. (A
logical area is a group of pages assigned to a particular table or index.)
Use this command to examine pages allocated to a table.

RMU Dump Snapshots Displays pages from the snapshot file.

Refer to the Oracle RMU Reference Manual for information about the
privileges you need to use the RMU Dump command with the Areas, Lareas,
or Snapshots qualifiers.

The following example shows the RMU Dump Area command for a Digital
UNIX system:

$ rmu -dump -areas=* mf_personnel

The command includes the Areas=* qualifier to display all storage areas for
the mf_personnel database. The RMU Dump command potentially can produce
many printed pages of output information. You should use the qualifiers
and options available to customize the dump output and obtain only the
information that you need.

Example 11–1 shows the output format of the RMU Dump command:

Example 11–1 Common Display Format for Logical Areas, Snapshot Files,
and Database Pages

! " #
001A 0390 line 1: record type 26

00 0001 0392 Control information
.... 71 bytes of static data

0420886874696D53353631303000010B 0395 data ’...00165Smith. .’
6E655420303231440D20847972726554 03A5 data ’Terry. .D120 Ten’
75726F636F684307209F2E7244207962 03B5 data ’by Dr.. .Chocoru’
4932C0004D3731383330484E12208B61 03C5 data ’a. .NH03817M.À2I’

00F032006B0E77 03D5 data ’w.k.2.’

The format shown in Example 11–1 is common to dumps for logical areas,
snapshot files, and database pages (regardless of whether the file is of mixed or
uniform page format). The hexadecimal output in Example 11–1 is read from
right to left:

! Hexadecimal notation as it appears on disk

" Offset of each line of the hexadecimal code

11–2 Displaying Root Files, Storage Areas, and Snapshot Files

ASCII translation of the hexadecimal code (nonprinting characters are
displayed as ‘‘.’’).

The Oracle RMU Reference Manual describes the RMU Dump command and
qualifiers in more detail.

11.2 Data Structures
The following table describes the data structures that manage storage areas.
These data structures reside on pages in the storage area:

Data Structure Description

ABM An area bit map (ABM) structure located on ABM pages. Each ABM entry
on the ABM page identifies a SPAM page that is assigned page clumps for a
particular logical area.

AIP An area inventory page (AIP) structure located on AIP pages. Each AIP entry
identifies ABM pages associated with a particular logical area. The AIP is
pointed to by the database root file.

SPAM A space area management (SPAM) structure located on SPAM pages. Each
SPAM entry on the SPAM page identifies the assignment of logical areas
(tables and indexes) to clumps of pages.

The SPAM data structure is common to both the uniform page format storage
area and the mixed page format storage area.

For single-file and multifile databases with uniform page format storage
areas, SPAM pages, ABM pages, and AIP pages control the placement and
retrieval of the data pages on which data rows and index records are stored.
See Figure 11–1 for more information.

For multifile databases with mixed page format storage areas, only SPAM
pages control the placement and retrieval of data pages. See Section 11.2.2 for
more information.

Snapshot (.snp) files contain only the data page type; snapshot files do not have
SPAM pages, ABM pages, or AIP pages. See Section 11.5 for more information.

11.2.1 Storage Areas with Uniform Page Format
When you create a storage area with uniform page format, the storage area file
is divided into groups of n pages, called clumps, where n is equal to the buffer
size divided by the page size. Both buffer size and page size are user-specified
values. By default, the buffer size is 6 blocks and the page size is 1024 bytes
or 2 blocks long, resulting in clumps of 3 pages, as shown in Figure 11–1.

Displaying Root Files, Storage Areas, and Snapshot Files 11–3

Figure 11–1 Storage Area with Uniform Page Format

AMSP

SALARY_HISTORY SALARY_HISTORY SALARY_HISTORY
2 3 4 5

Page

EMPLOYEES
1

. . .

. . . Clump Clump

NU−2082A−RA

Record Type = 29 Record Type = 26Record Type = 29Record Type = 29

Each clump is assigned to a specific logical area. (A logical area refers to the
way Oracle Rdb internally partitions the logical entities that comprise the
database). Each logical area corresponds to either a database management
function, a data row storage area, or an index segment storage area. All pages
in a specific logical area contain records or index nodes from the same table
identified by its record type ID number.

For single-file databases:

• All indexes for the same table in the RDB$SYSTEM area share the same
logical area

• Rows from different tables cannot occur on different pages within the same
clump because these rows represent different logical areas

• Each clump of three pages is described by the record type ID number, as
shown in Figure 11–1

• For tables, pages are never mixed at the clump level

• Index node records from different index structures, for the same table, can
occur on different pages within the same clump

If Oracle Rdb needs more space to store a row in a table and there are pages
available in the database that are not allocated to any logical areas, a clump
of database pages is reserved and allocated for a logical area, one clump at
a time. If, in the process of trying to allocate a clump of pages to a logical
area, there is no more space available, the physical area is extended. Only one
clump is allocated to the table at a time.

Areas with uniform page format are managed by the SPAM, ABM, and AIP
data structures (described in Section 11.2). Figure 11–2 shows the relationship
between the database root file (.rdb) file, the AIP and ABM data structures,
and the SPAM and data pages.

11–4 Displaying Root Files, Storage Areas, and Snapshot Files

Figure 11–2 Mapping AIP and ABM Data Structures to SPAM and Data Pages

ABM
AIP
Data
SPAM

SPAM SPAM SPAM SPAM

=
=
=
=

Area bit map page

DataData DataData

Area inventory page
Data pages containing rows of the EMPLOYEES table

ABM

Space area management page

Legend

AIP

RDB Root File

Pointers

ABM ABM

ZK−1005A−GE

The SPAM data structure is common to both the uniform page format storage
area and the mixed page format storage area. The SPAM page for storage
areas with uniform page format indicates the fullness threshold for each of the
data pages and contains a list of clumps and the logical areas to which they
belong. To scan a logical area, Oracle Rdb takes the following steps:

1. Locates the AIP entry for the area that locates the ABM chain for the
logical area

2. Examines the ABM chain and locates the SPAM pages that have page
clump assignments for the logical area

Displaying Root Files, Storage Areas, and Snapshot Files 11–5

3. Examines the SPAM pages and locates the page clumps that belong to the
logical area

4. Examines each data page in the page clump that belongs to the logical area

See Chapter 13 for more information on SPAM pages, ABM data structures,
and AIP data structures.

11.2.2 Storage Areas with Mixed Page Format
A storage area with a mixed page format contains pages that can hold rows
from more than one table or hashed-index structure and nodes for sorted
indexes. Mixed page format:

• Allows related rows from different tables to be clustered together (shown in
Figure 11–3) and identified by their record type ID numbers

• Allows index records to be clustered together with table rows on the same
page and identified in the system record by their set-type (logical area) ID
numbers

The table row database key (dbkey) pointer found in the index structure
associates the index with the table or tables to which it belongs, (see
Example 12–13 and the Oracle Rdb7 Guide to Database Design and
Definition for examples of this type of row and index clustering).

Figure 11–3 Storage Area with Mixed Page Format

SALARY.
.
.

System Record

SALARY

.

.

.

System Record

AMSP

2 3

Page

1

. . .

NU−2083A−RA

EMPLOYEES Row (Record Type=26)
_HISTORY Row (Record Type=29)SALARY

SALARY

EMPLOYEES Row (Record Type=26)

SALARY_HISTORY Row (Record Type=29)
_HISTORY Row (Record Type=29)

_HISTORY Row (Record Type=29)
_HISTORY Row (Record Type=29)

Data pages do not ‘‘belong’’ to a particular kind of clump; thus, SPAM pages
for storage areas that are mixed page format contain only fullness threshold
information. SPAM pages do not contain any clump management information.

11–6 Displaying Root Files, Storage Areas, and Snapshot Files

A mixed page format storage area contains a file of database data pages, any
of which can store row occurrences. Rows are stored in a mixed page format
storage area either by checking the SPAM page first for a data page with space
to store the complete record or by using a hashed index to hash the row to a
target data page (without checking the SPAM page).

A placement index is an index (usually a hashed index) that is specified in
the PLACEMENT VIA INDEX option in a storage map definition. If the
complete record can fit on the target data page, it is stored there along with
the associated index structures (system record, hash bucket, and duplicate
hash node [if needed], if it is a hashed index). If the complete record cannot
fit on the target data page, the following happens depending on whether a
placement index is used to place the row:

• When no placement index is used, the SPAM page is checked to locate
available space on another data page within the SPAM interval of data
pages in the storage area.

• If a placement index is used to place the row in the storage area, data
pages in the buffer are checked first for available space. Only when no
available space is found on the data pages in the buffer will the SPAM
page be checked to locate another data page with available space.

If table rows use a placement index, then even if the record does not fit on a
particular target data page, the record is likely to be stored within the same
buffer load of data pages, particularly if the storage area is initially sized
correctly. If the data pages in the buffer are full and no available space is
located from the SPAM page, Oracle Rdb begins a sequential analysis of the
remaining SPAM pages in the storage area if SPAM pages are enabled. The
sequential search continues to the end of the storage area and wraps around
to the beginning of the storage area. Once the first SPAM interval is accessed
again and no available space is found, the storage area is extended and the
row is placed on a data page in the extended portion of the file.

11.3 Displaying Data Storage Files
Use the RMU Dump Area command to display a range of pages from the data
storage file or files:

• In a single-file database, there is one data storage file, the .rdb file

• In a multifile database, the .rdb file contains information about all data
storage areas (.rda files), and there may be separate .rda files that contain
data from one or more tables

Examples 11–2 and 11–3 show how to display all storage areas or selected
storage areas of the mf_personnel sample database.

Displaying Root Files, Storage Areas, and Snapshot Files 11–7

Displaying All Storage Areas in the Database
Example 11–2 shows the data storage areas of the multifile database mf_
personnel. Example 11–2 displays the initial parts of two storage areas:

• RDB$SYSTEM

The uniform page format storage area, RDB$SYSTEM, shows the first
SPAM page header followed by SPAM entries that indicate data page
capacities (3=full, 0=empty), then the clump count, and then the logical
area designation for each clump that indicates the logical area to which it
and its data pages belong for all logical areas in the database.

• EMPIDS_LOW

The mixed page format storage area, EMPIDS_LOW, displays the first
SPAM page header for this physical area, then the SPAM entries for page
fullness thresholds for the data storage pages as shown in Example 11–2.

This type of information displays for all physical areas of the database when
you enter the RMU Dump Area command.

Example 11–2 Storage Areas of the mf_personnel Database

$ RMU/DUMP/AREA/START=1/END=1 MF_PERSONNEL
*--
* Oracle Rdb V7.0-0 14-FEB-1996 09:34:02.85
*
* Dump of Live area RDB$SYSTEM
* Filename: $DUA1:[ORION]MF_PERS_DEFAULT.RDA;1
* Database: $DUA1:[ORION]MF_PERSONNEL.RDB;1
*
*--

0001 00000001 0000 page 1, physical area 1 (space mgmt) !
BD045E16 0006 checksum = BD045E16

80000000 00000001 000A Fast incremental backup TSN = 1
0000 0001 0012 1 free byte, 0 locked

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0016 pages 2-65: threshold 3 "
FFF3CFFFFFFFFFFFFFFFFFFFFFFFFFFF 0026 pages 66-119: threshold 3

(continued on next page)

11–8 Displaying Root Files, Storage Areas, and Snapshot Files

Example 11–2 (Cont.) Storage Areas of the mf_personnel Database
.
.
.

016B 0127 363 clumps #
4001 0129 pages 2-4, logical area 16385
0001 012B pages 5-7, logical area 1
0002 012D pages 8-10, logical area 2

.

.

.
*--
* Oracle Rdb V7.0-0 14-FEB-1996 09:39:50.74
*
* Dump of Live area EMPIDS_LOW
* Filename: $DUA1:[ORION]EMPIDS_LOW.RDA;1
* Database: $DUA1:[ORION]MF_PERSONNEL.RDB;1
*
*--

0002 00000001 0000 page 1, physical area 2 (space mgmt) !
12E68E03 0006 checksum = 12E68E03

80000000 00000010 000A Fast incremental backup TSN = 16
0000 03B4 0012 948 free bytes, 0 locked

0000000000000000010003200D000C02 0016 page 2: threshold 2 "
pages 3-6: threshold 0
page 7: threshold 3
.
.
.

LEGEND

! SPAM page header
" SPAM entries indicating page capacities as follows:

3=95% to 100% full
2=85% to less than 95% full
1=70% to less than 85% full
0=0% to less than 70% full

Clump count and logical area entry for a clump of data pages

Displaying Specific Storage Areas in the Database
To see a specific storage area, use the RMU Dump Area command and specify
the name of the storage area, as shown in Example 11–3. In this example of
the mixed page format storage area, EMP_INFO, the SPAM page header is
followed by SPAM entries for page fullness thresholds for data storage pages.

Displaying Root Files, Storage Areas, and Snapshot Files 11–9

Example 11–3 EMP_INFO Storage Area

$ RMU/DUMP/AREA=EMP_INFO MF_PERSONNEL
*--
* Oracle Rdb V7.0-0 14-FEB-1996 10:20:23.29
*
* Dump of Live area EMP_INFO
* Filename: $DUA1:[ORION]EMP_INFO.RDA;1
* Database: $DUA1:[ORION]MF_PERSONNEL.RDB;1
*
*--

0008 00000001 0000 page 1, physical area 8 (space mgmt) !
03BA800A 0006 checksum = 03BA800A

80000000 00000007 000A Fast incremental backup TSN = 7
0000 03AA 0012 938 free bytes, 0 locked

0000000000000000000000000000FFFF 0016 pages 2-9: threshold 3 "
pages 10-65: threshold 0

00000000000000000000000000000000 0026 pages 66-129: threshold 0
00000000000000000000000000000000 0036 pages 130-193: threshold 0

000000000000 0046 pages 194-217: threshold 0

00000000000000000000000000000000 004C MBZ free ’................’
:::: (58 duplicate lines)

000000000000000000 03FC MBZ free ’.........’

0008 00000002 0000 page 2, physical area 8 #
FD66380F 0006 checksum = FD66380F

009714FB 982F69E0 000A time stamp = 20-JAN-1996 16:00:30.59
0000 0036 0012 54 free bytes, 0 locked

0012 0016 17 lines
.
.
.

0039 01AA 0048 line 12: offset 01AA, 57 bytes $
0039 0170 004C line 13: offset 0170, 57 bytes
0032 013E 0050 line 14: offset 013E, 50 bytes
0035 0108 0054 line 15: offset 0108, 53 bytes
0032 00D6 0058 line 16: offset 00D6, 50 bytes

00000000 005C line 0: TSN 0 %
00000007 0060 line 1: TSN 7
00000007 0064 line 2: TSN 7
00000007 0068 line 3: TSN 7

(continued on next page)

11–10 Displaying Root Files, Storage Areas, and Snapshot Files

Example 11–3 (Cont.) EMP_INFO Storage Area

.

.

.
00000000000000000000000000000000 00A8 free space ’................’ &

001F 00D6 line 16: record type 31 '
00 0001 00D8 Control information

.... 45 bytes of static data
746973726576696E5520454D55000118 00DB data ’...UME Universit’
6F724F042085656E69614D20666F2079 00EB data ’y of Maine. .Oro’

E03337343430454D07208E6F6E 00FB data ’no. .ME04473à’

001F 0108 line 15: record type 31
00 0001 010A Control information

.... 48 bytes of static data
2064726F666E6174534E415453000118 010D data ’...STANStanford ’
61745307208579746973726576696E55 011D data ’University. .Sta’
E03530333439414307208B64726F666E 012D data ’nford. .CA94305à’

00 013D padding ’.’
.
.
.

0008 0000001F 0000 page 31, physical area 8 #
184626AC 0006 checksum = 184626AC

009714FB 0208FF80 000A time stamp = 20-JAN-1996 15:56:18.68
0000 03C4 0012 964 free bytes, 0 locked

0001 0016 1 line
0005 03E4 0018 line 0: offset 03E4, 5 bytes $

00000000 001C line 0: TSN 0 %

00000000000000000000000000000000 0020 free space ’................’ &
:::: (59 duplicate lines)

00000000 03E0 free space ’....’

2001 03E4 line 0: SYSTEM record (
00 0001 03E6 1 byte in 0 sets/dynamic items

0000000000 03E9 padding ’.....’

FFFFFFFF 03EE snap page pointer -1)
00000000 03F2 snap pointer TSN 0

0000 03F6 MBZ ’........’
00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

(continued on next page)

Displaying Root Files, Storage Areas, and Snapshot Files 11–11

Example 11–3 (Cont.) EMP_INFO Storage Area

LEGEND

! SPAM page header
" SPAM entries indicating page capacities as follows:

3=95% to 100% full
2=85% to less than 95% full
1=70% to less than 85% full
0=0% to less than 70% full

Data page header
$ Line index
% TSN index
& Free space
' User-stored data storage record
(System record
) Page tail

See Chapter 12 for more information about each of the seven components of a
data page. Refer to the threshold setting to determine the fullness thresholds.

11.4 Displaying Logical Areas
The RMU Dump Larea command displays the storage area pages contained in
one or more logical areas (a group of pages assigned to a particular table or
index). Each table stored in an Oracle Rdb database has its own logical area.
In a single-file database, each table in the database is stored in its own logical
area. System tables, user-defined tables, and indexes for a table are also stored
in the logical area.

You can use the RMU Dump Larea command to display pages for storage areas
with the uniform page format only. For storage areas with a uniform page
format, ABM pages track the location of SPAM pages, which keep track of
information on the data pages.

The following table describes how the RMU Dump Larea command handles
uniform page format and mixed page format storage areas:

For . . . The RMU Dump Larea command . . .

A single-file database or a
multifile database that has
storage areas with a uniform
page format

Displays the ABM page of the logical area first.

11–12 Displaying Root Files, Storage Areas, and Snapshot Files

For . . . The RMU Dump Larea command . . .

A multifile database that has
storage areas with a mixed page
format

Does not display logical areas because a storage area with the
mixed page format does not contain ABM pages. The RMU
Dump Larea command returns the database header and a
message.

See Section 11.2 for a description of the ABM and SPAM page structures.

Displaying a Logical Area in the RDB$SYSTEM Storage Area
Example 11–4 shows an abbreviated view of the ABM pages in the
CANDIDATES logical area contained in the RDB$SYSTEM storage area
(which always has a uniform page format).

Example 11–4 CANDIDATES Logical Area

$ RMU/DUMP/LAREA=CANDIDATES MF_PERSONNEL
*--
* Oracle Rdb V7.0-0 14-FEB-1996 10:45:50.12
*
* Dump of Logical area CANDIDATES
* Filename: $DUA1:[ORION]MF_PERS_DEFAULT.RDA;1
* Database: $DUA1:[ORION]MF_PERSONNEL.RDB;1
*
*--

!
0001 000002D2 0000 page 722, physical area 1 !

7B5D6255 0006 checksum = 7B5D6255
009714FB 5EEAC4E0 000A time stamp = 20-JAN-1996 15:58:54.51

0000 0004 0012 4 free bytes, 0 locked

000002D3 0016 next area bit map page 723
00000000 001A max set bit index 0
00000000 001E MBZ ’....’

00001E60 0022 bitvector count 7776

00000000000000000000000000000001 0026 bitvector ’................’
00000000000000000000000000000000 0036 bitvector ’................’

:::: (58 duplicate lines)
000000000000000000000000 03E6 bitvector ’............’

00000000 03F2 MBZ ’....’

804A 03F6 bitmap page for logical area 74 "
00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

(continued on next page)

Displaying Root Files, Storage Areas, and Snapshot Files 11–13

Example 11–4 (Cont.) CANDIDATES Logical Area

0001 000002D3 0000 page 723, physical area 1 !
2BDD6244 0006 checksum = 2BDD6244

009714FB 5ED87560 000A time stamp = 20-JAN-1996 15:58:54.39
0000 0004 0012 4 free bytes, 0 locked

000002D4 0016 next area bit map page 724
00000000 001A max set bit index 0
00000000 001E MBZ ’....’
00001E60 0022 bitvector count 7776

00000000000000000000000000000000 0026 bitvector ’................’
:::: (59 duplicate lines)

000000000000000000000000 03E6 bitvector ’............’

00000000 03F2 MBZ ’....’

804A 03F6 bitmap page for logical area 74 "
00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

.

.

.

LEGEND

! Data page header
" Page tail

In Example 11–4, the RMU Dump Larea command displays all database pages
that belong to the CANDIDATES table. You can use the RMU Dump Larea
command to look at rows for a particular table. For example:

If . . . Then . . .

The rows are stored on pages that are
close together

The rows can be read from disk into database buffers
in a few I/O operations. Queries that require scans
of an entire table benefit both from rows being stored
on pages that are close together and from large
buffers that you define in SQL CREATE and ALTER
statements.

Your application is update intensive with
many users making updates

Rows should not be placed close together.

Your application is update intensive with
the updates performed by a single user

The rows are likely to be placed close together.

See Section 13.3.1 for a description of the components of the ABM page type.

11–14 Displaying Root Files, Storage Areas, and Snapshot Files

Obtaining a List of All Logical Areas
Enter the Oracle RMU commands shown in Example 11–5 to obtain a list of all
logical areas. The commands in the example display only header information
for each logical area in the mf_personnel database, including the logical area
name.

Example 11–5 Commands to Display the First Page of All Logical Areas

$ RMU/DUMP/LAREA/START=1/END=1 MF_PERSONNEL
$
$ RMU/DUMP/LAREA/START=2000000000 MF_PERSONNEL

Displaying Logical Area ID Information
To display logical area ID information, use the RMU Analyze command shown
in Example 11–6.

Example 11–6 Command to Display Area IDs of All Logical Areas

$ RMU/ANALYZE/OPTIONS=DEBUG/END=1 MF_PERSONNEL

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning for
more information about using the RMU Analyze command and interpreting
information in the display output.

Displaying Logical Area Numbers and Names
Also, you can display logical area numbers and names by dumping the
RDB$AIP logical area, which maintains a list of all logical areas in the
database. Example 11–7 shows two of the logical areas (entries #0 and #1)
in the mf_personnel database. This information is useful for finding out the
names of the logical areas that contain indexes for tables. The command
shown in Example 11–7, entered on a Digital UNIX system, encloses the name
RDB$AIP in single quotation marks. The quotation marks are unnecessary
when you enter the command to dump the RDB$AIP logical area on an
OpenVMS system.

Displaying Root Files, Storage Areas, and Snapshot Files 11–15

Example 11–7 Logical Area RDB$AIP Listing Logical Area Numbers and Names of the mf_
personnel Database

$ rmu -dump -larea=’RDB$AIP’ mf_personnel.rdb
*--
* Oracle Rdb V7.0-00 13-FEB-1996 15:29:50.73
*
* Dump of Logical area RDB$AIP
* Filename: $DUA1:[ORION]MF_PERS_DEFAULT.RDA;1
* Database: $DUA1:[ORION]MF_PERSONNEL.RDB;1
*
*--

0001 00000002 0000 page 2, physical area 1 !
EBB7795E 0006 checksum = EBB7795E

009714FB 05FCA7E0 000A time stamp = 20-JAN-1996 15:56:25.31
0000 0022 0012 34 free bytes, 0 locked

00000003 0016 next area inventory page 3 "
0000000000000000 001A MBZ ’........’

0010 0022 16 logical area entries #

entry #0
00000005 0024 first area bitmap page 5 $

0001 0001 0028 logical area 1, physical area 1 %
15 002C area name length 21 bytes &

54535F4445544E454D47455324424452 002D area name ’RDB$SEGMENTED_ST’
0000000000000000000053474E4952 003D area name ’RINGS..........’

00000001 004C snaps enabled TSN 1 '
00A2 0050 record length 162 bytes (

00000000 0052 MBZ ’....’
01 0056 entry is in use)

0000 0057 MBZ ’..’
000000 0059 thresholds are (0,0,0) +>
000000 005C MBZ ’...’

.

.

.
4001 03F6 logical area 16385

00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

(continued on next page)

11–16 Displaying Root Files, Storage Areas, and Snapshot Files

Example 11–7 (Cont.) Logical Area RDB$AIP Listing Logical Area Numbers and Names of
the mf_personnel Database

LEGEND

! AIP header
" Pointer to next AIP
Number of logical area entries on the AIP
$ Pointer to first ABM page for this logical area
% Logical area and storage area numbers
& Logical area name
' Last transaction to perform an exclusive update to this

logical area
(Original record length
) Used for setting SPAM thresholds
+> User-specified logical area SPAM thresholds

The entry number gives the number of each entry in the RDB$AIP logical area
for the current page. The information stored for each entry includes the logical
area number and logical area name for each logical area in the database.

Error When Displaying Logical Area for a Mixed Page Format
In a multifile database, Oracle RMU cannot display information about logical
areas that reside in a mixed page format storage area. Example 11–8 shows
the message that is returned instead of the logical area display.

Example 11–8 Attempts to Display the Contents of the EMPLOYEES Logical Area

$ RMU/DUMP/LAREA=EMPLOYEES MF_PERSONNEL
*--
* Oracle Rdb V7.0-0 14-FEB-1996 11:00:29.45
*
* Dump of Logical area EMPLOYEES
* Filename: $DUA1:[ORION]EMPIDS_LOW.RDA;1
* Database: $DUA1:[ORION]MF_PERSONNEL.RDB;1
*
*--

This data resides in a MIXED FORMAT storage area. It may not be dumped
by LOGICAL AREA.

Displaying Root Files, Storage Areas, and Snapshot Files 11–17

Using the Area and Larea Qualifiers Together
You can use the Lareas and Area qualifiers together to obtain more specific
information. The following command displays the pages, if any, of a logical
area called CANDIDATES in the default RDB$SYSTEM storage area:

$ RMU/DUMP/AREA=RDB$SYSTEM/LAREA=CANDIDATES

11.5 Displaying Snapshot Files
The RMU Dump Snapshots command displays the contents of your snapshot
(.snp) file, letting you see exactly what rows and index nodes are stored there.
Of particular interest might be the number of versions of a given row in the
snapshot file, indicating long read-only transactions concurrent with heavy
update activity on a table. Displaying the contents of your snapshot file gives
you an idea of how much you are using that file.

The RMU Dump Snapshots command shown in Example 11–9 works similarly
to the RMU Dump Area command.

Example 11–9 First Page of Selected Snapshot Files

$ RMU/DUMP/SNAPSHOTS/START=1/END=1 MF_PERSONNEL
*--
* Oracle Rdb V7.0-0 14-FEB-1996 11:04:29.16
*
* Dump of Snapshot area for live area RDB$SYSTEM
* Filename: DUA1:[ORION.TEST]MF_PERS_DEFAULT.SNP;1
* Database: DUA1:[ORION.TEST]MF_PERSONNEL.RDB;1
*
*--

4001 00000001 0000 page 1, physical area 16385 !
F1C15BDC 0006 checksum = F1C15BDC

00972322 1328A4C0 000A time stamp = 7-JAN-1996 16:11:14.06
0000 02F4 0012 756 free bytes, 0 locked

0001 0016 1 line
00D0 0316 0018 line 0: offset 0316, 208 bytes "

00000048 001C line 0: TSN 72 #

0001 0020 line 0 -> live line: 1 $

00000000000000000000000000000000 0022 free space ’................’
:::: (46 duplicate lines)

000000 0312 free space ’...’ %

(continued on next page)

11–18 Displaying Root Files, Storage Areas, and Snapshot Files

Example 11–9 (Cont.) First Page of Selected Snapshot Files

.... total B-tree node size:208 &
0032 2004 0316 line 1: index node for set 50

0000 FFFFFFFF FFFF 031A owner 0:-1:-1
0070 0322 112 bytes of DBKs

004D 00000003 0005 0326 duplicate record 77:3:5
004D 00000004 0005 032E duplicate record 77:4:5
004D 00000004 000C 0336 duplicate record 77:4:12
004D 00000005 0007 033E duplicate record 77:5:7
004D 00000005 000B 0346 duplicate record 77:5:11
004D 00000005 000C 034E duplicate record 77:5:12
004D 00000006 000D 0356 duplicate record 77:6:13
004D 00000006 000E 035E duplicate record 77:6:14
004D 00000006 0012 0366 duplicate record 77:6:18
004D 00000007 0008 036E duplicate record 77:7:8
004D 00000008 0001 0376 duplicate record 77:8:1
004D 00000008 0008 037E duplicate record 77:8:8
004D 00000008 0009 0386 duplicate record 77:8:9
004D 00000008 000A 038E duplicate record 77:8:10

00000000000000000000000000000000 0396 unused ’................’
:::: (3 duplicate lines)

FFFF FFFFFFFF FFFF 03D6 next node: -1:-1:-1
0000000000000000 03DE MBZ ’........’

00000302 03E6 live page pointer 770 '
00000220 03EA max TSN 544
FFFFFFFF 03EE snap page pointer -1
00000000 03F2 snap pointer TSN 0

0000 03F6 MBZ ’..’
00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

*--
* Oracle Rdb V7.0-0 14-FEB-1996 11:04:30.12
*
* Dump of Snapshot area for live area EMPIDS_LOW
* Filename: DUA1:[ORION.TEST]EMPIDS_LOW.SNP;1
* Database: DUA1:[ORION.TEST]MF_PERSONNEL.RDB;1
*
*--

(continued on next page)

Displaying Root Files, Storage Areas, and Snapshot Files 11–19

Example 11–9 (Cont.) First Page of Selected Snapshot Files

4002 00000001 0000 page 1, physical area 16386 !
BAC60353 0006 checksum = BAC60353

00972322 13B99A20 000A time stamp = 7-JAN-1996 16:11:15.01
0000 01CA 0012 458 free bytes, 0 locked

0008 0016 8 lines
004C 039A 0018 line 0: offset 039A, 76 bytes "
0025 0375 001C line 1: offset 0375, 37 bytes
0033 0342 0020 line 2: offset 0342, 51 bytes
005C 02E6 0024 line 3: offset 02E6, 92 bytes
002B 02BB 0028 line 4: offset 02BB, 43 bytes
002B 0290 002C line 5: offset 0290, 43 bytes
002B 0265 0030 line 6: offset 0265, 43 bytes
0033 0232 0034 line 7: offset 0232, 51 bytes

00000010 0038 line 0: TSN 16 #
00000028 003C line 1: TSN 40
00000028 0040 line 2: TSN 40
00000028 0044 line 3: TSN 40
00000028 0048 line 4: TSN 40
00000028 004C line 5: TSN 40
00000028 0050 line 6: TSN 40
00000010 0054 line 7: TSN 16

0001 0058 line 0 -> live line: 1 $
0009 005A line 1 -> live line: 9
0005 005C line 2 -> live line: 5
0007 005E line 3 -> live line: 7
0008 0060 line 4 -> live line: 8
0006 0062 line 5 -> live line: 6
0004 0064 line 6 -> live line: 4
0002 0066 line 7 -> live line: 2

00000000000000000000000000000000 0068 free space ’................’ %
:::: (27 duplicate lines)

0000 0228 free space ’..’

003A 2005 0232 line 2: bucket for hash index 58 &
.... total hash bucket size: 51

FFFF FFFFFFFF FFFF 0236 bucket overflow -1:-1:-1
00 023E flags 0

00000001 023F duplicate count 1
003F 00000002 0001 0243 pointer 63:2:1

06 024B key len: 6 bytes
353631303000 024C key: ’.00165’

00000001 0252 duplicate count 1
003F 00000002 0003 0256 pointer 63:2:3

06 025E key len: 6 bytes
303931303000 025F key: ’.00190’

(continued on next page)

11–20 Displaying Root Files, Storage Areas, and Snapshot Files

Example 11–9 (Cont.) First Page of Selected Snapshot Files
001D 0265 line 4: record type 29 &

00 0001 0267 Control information
.... 38 bytes of static data

CEFB80004B4353413536313030000124 026A data ’$..00165ASCK..ûÎ’
4E52485000853002AFCC80000082BE82 027A data ’.....Ì.0..PHRN’

C03130323030 028A data ’00201À’
.
.
.

00000002 03E6 live page pointer 2 '
00000220 03EA max TSN 544
FFFFFFFF 03EE snap page pointer -1
00000000 03F2 snap pointer TSN 0

0000 03F6 MBZ ’..’
00000000 03F8 page sequence number 0

.

.

.
LEGEND

! Snap page header
" Line index
TSN index
$ Live line index
% Free space
& Record snapshot
' Page tail

Snapshot file pages contain many of the same components as data storage
pages. The following components are added to help manage snapshot file
transactions:

$ Live line index

A third-line index that relates each line on the snapshot file (snap) page
with the corresponding line on the live page. A live page is a data page,
and is distinguished from a snapshot file page.

' Page tail

A page tail that points to the live page corresponding to this snapshot page
and the most recent transaction represented on this snapshot page. The
two fields, live page pointer, and max TSN are specific to snapshot files.

Displaying Root Files, Storage Areas, and Snapshot Files 11–21

In addition, notice that the area number component in the snapshot page
header is different from the live data page header:

! Snap page header

The area number written on each page in a snapshot file is the same
as the one written in the corresponding live storage area (.rda) file, but
incremented by 16384. This is the number that the RMU Dump command
displays. It is the decimal representation of the same area number as the
following example shows:

Live Area Number Snapshot Area Number
HEX DECIMAL HEX DECIMAL
0001 1 4001 16385
0002 2 4002 16386

In cases when a majority of the line indexes are empty and the majority of
the transaction sequence numbers (TSNs) are zero, there are no snapshots
of records on the pages displayed in the MF_PERS_DEFAULT.SNP and MF_
PERS_SEGSTR.SNP snapshot files. Example 11–11 shows a snapshot file page
containing snapshots of several rows.

The RMU Dump Snapshots command is useful if you know which pages in
the snapshot file or files you want to see. You can use the Output qualifier to
direct the display information into a text file, as shown in Example 11–10.

Example 11–10 Displaying Selected Pages of the EMPIDS_LOW Snapshot
File to an Output File

$ RMU/DUMP/SNAPSHOTS=(EMPIDS_LOW)/START=25/END=35/OUTPUT=SNAP_DUMP.LIS -
_$ MF_PERSONNEL

The command in Example 11–10 displays pages 25 through 35 of the EMPIDS_
LOW snapshot file into a file called SNAP_DUMP.LIS that you can edit or
print. Snapshot files contain only one type of database page format, a snapshot
file page.

11.5.1 Snapshot Page Tail
Example 11–11 is another example of a snapshot file.

11–22 Displaying Root Files, Storage Areas, and Snapshot Files

Example 11–11 Snapshot File Showing the Page Tail

4004 00000001 0000 page 1, physical area 16388 !
F1C15BDC 0006 checksum = F1C15BDC

00972322 1328A4C0 000A time stamp = 7-JAN-1996 16:11:14.06
0000 0362 0012 866 free bytes, 0 locked

0003 0016 3 lines
0012 03D4 0018 line 0: offset 03D4, 18 bytes "
001E 03B6 001C line 1: offset 03B6, 30 bytes
001E 0398 0020 line 2: offset 0398, 30 bytes

000001A1 0024 line 0: TSN 417 #
000001D8 0028 line 1: TSN 472
000001D8 002C line 2: TSN 472

000C 0030 line 0 -> live line: 12 $
000E 0032 line 1 -> live line: 14
0010 0034 line 2 -> live line: 16

00000000000000000000000000000000 0036 free space ’................’ %
:::: (53 duplicate lines)

0000 0396 free space ’..’

000D 0398 line 16: record type 13 &
00 0001 039A Control information

.... 25 bytes of static data
530220896D616853333037303000010A 039D data ’...00703Sham. .S’

F8FF0100D720866D61 03AD data ’am. ×...ø’

000D 03B6 line 14: record type 13 &
00 0001 03B8 Control information

.... 25 bytes of static data
530220896D616853323037303000010A 03BB data ’...00702Sham. .S’

F8FF0100D720866D61 03CB data ’am. ×...ø’

000D 03D4 line 12: record type 13 &
00 0001 03D6 Control information

.... 13 bytes of static data
FEFF0100EF3130373030000106 03D9 data ’...00701ï...þ’

00000153 03E6 live page pointer 339 '
0000022B 03EA max TSN 555 (
FFFFFFFF 03EE snap page pointer -1)
00000000 03F2 snap pointer TSN 0 +>

0000 03F6 MBZ ’..’
00000000 03F8 page sequence number 0 +?
00000000 03FC MBZ ’....’

(continued on next page)

Displaying Root Files, Storage Areas, and Snapshot Files 11–23

Example 11–11 (Cont.) Snapshot File Showing the Page Tail

LEGEND

! Snap page header
" Line index
TSN index
$ Live line index
% Free space
& User-stored data storage record
' Live page pointer
(Maximum TSN
) Snap page pointer
+> Snap pointer TSN
+? Page sequence number

As shown in Example 11–11, the snapshot file page tail contains 26 bytes (not
18, as found on a data page) because of two additional fields:

• The live page pointer

• The maximum transaction sequence number (TSN) or last snap TSN

In addition, the snap page pointer and the snap pointer TSN have slightly
different meanings on a snapshot file page.

The individual fields are as follows:

' Live page pointer

This 4-byte field (00000153) shows the corresponding live data page for this
.snp file page.

(Maximum TSN

This 4-byte field (0000022B) shows the most recent transaction to write
to this snapshot file page. For every active read/write transaction (except
read/write exclusive and batch-update transactions), data rows are written
to a page in the snapshot file by the transaction that is doing the updating.
This value represents the highest or current TSN value for the snapshot
file page.

) Snap page pointer

This 4-byte field (FFFFFFFF) shows the next snapshot file page in the
snapshot chain. In this case, there is no next snapshot file page.

11–24 Displaying Root Files, Storage Areas, and Snapshot Files

+> Snap pointer TSN

This 4-byte field (00000000) shows the most recent transaction to write to
the next snapshot file page. This value and the max TSN value together
determine the span of transactions that wrote to this snapshot page.

+? Page sequence number

This 4-byte field (00000000) shows the page sequence number. The page
sequence number is used for recovery purposes for databases running
Oracle Rdb V4.1 and higher.

Displaying Root Files, Storage Areas, and Snapshot Files 11–25

12
Displaying the Contents of Data Storage

Pages

Data storage pages consist of one or more disk blocks of 512 bytes each. The
number of blocks in a page is defined when you create a database.

This chapter describes the data storage page and its components that are
listed in Table 12–1:

Table 12–1 Components of a Data Storage Page

Component Description Reference

Page header Fixed-length portion of the page
that contains page and storage area
information.

Section 12.1

Line index Directory to all the storage segmenets on
the page.

Section 12.2

TSN index An index of transaction sequence number
(TSN) entries; one for each storage
segment or storage record on the page.

Section 12.3

Free space Space that is allocated to the storage
segments during database transactions.

Section 12.4

Locked free space Free space that is associated (using the
transaction identification number (TID))
with a transaction when a user attaches
to the database. Unlocked free space is
not associated with any transactions.

Section 12.4

Storage segments
(storage records)

The largest portion of the data storage
page that stores either a whole storage
record or fragmented segments. A record
becomes fragmented when it is too large
to fit on a single database page.

Section 12.5

(continued on next page)

Displaying the Contents of Data Storage Pages 12–1

Table 12–1 (Cont.) Components of a Data Storage Page

Component Description Reference

Page tail Fixed format (18 byte) portion of the data
storage page that follows the storage
segments at the end of the data page.

Section 12.6

Many of these components are also components of a snapshot (.snp) file page.
Figure 12–1 shows the components of a data storage page.

Figure 12–1 Data Storage Page Components in a Mixed Page Format
Storage Area

. . .

NU−2084A−RA

Page
Header

Line
Index

TSN
Index

Page
Tail

Free Space

System Storage Record
(Mixed Storage Area Only)

Maximum
Snap TSN

Logical
Area

Timestamp Page
Checksum

Page
Number

Length of
Storage
Segment

Offset from Page
Beginning to
Storage Segment

Line Index
Count

TSN
of Lines

Storage
Segments

Locked
Space

Free
Space

Bytes
Locked
Space

Bytes
Free
Space

Locked Space

Storage Segments
User−Stored and Index Nodes

TSN Index

Storage Area
Identification
Number

Snap
Page
Pointer

Page
Sequence
Number

Note that only the mixed page format storage areas contain one system record
per page.

12–2 Displaying the Contents of Data Storage Pages

12.1 Page Header for a Data Storage Page
The page header is a fixed-length portion of the page that contains page and
storage area information, as shown in Example 12–1.

Example 12–1 Page Header for a Data Storage Page

" !
0001 00000060 0000 page 96, physical area 1

#
00000000 0006 checksum = 00000000

$
0089943A DFF43F20 000A time stamp = 4-AUG-1987 15:53:59.57

& %
0000 031C 0012 796 free bytes, 0 locked

The page header shown in Example 12–1 contains the following hexadecimal
information as read from right to left and from top to bottom:

! Page number

Each page is identified in its storage area by the page number field
(00000060). This number is a permanent part of the database page.

" Storage area number

This number identifies the storage area (0001) in which the page is
contained. In combination with the page number, the storage area number
identifies a page in the database. Like the page number, the storage area
number is a permanent part of the page.

Page checksum

The page checksum (00000000) indicates valid data on the bit level,
allowing Oracle Rdb to detect invalid transfers of data.

$ Timestamp of last modification

The timestamp (0089943A DFF43F20) is changed each time a page is
written back to the database. This value shows the time and date of the
last modification to that page.

The time is stored with 100 nanosecond precision but is displayed to only a
hundredth-of-a-second precision in the ASCII translation. The accuracy is
system dependent.

% Number of bytes of free space

If a page is not filled with data and the associated overhead, there is free
space (031C) on that page. This page header entry shows how much free
space is left on that page.

Displaying the Contents of Data Storage Pages 12–3

& Number of bytes of locked free space

There is also an entry for locked free space (0000), free space allocated to
transaction activity until it is finished with that page.

12.2 Line Index for a Data Storage Page
The line index is a dynamic portion of a database page. It is a directory to all
the storage segments on the page. The line index begins with a 2-byte field
that contains a count of the number of line index entries.

Following the line index count is a variable number of line index entries, one
for every storage segment (storage record) in the page. Each line index entry
contains a pair of 2-byte fields—an offset address relative to the beginning
of the page and length value that indicates the size of the storage segment.
Oracle Rdb uses the offset address and length to locate the data on the page,
given the page and line number components of the database key (dbkey).

Example 12–2 shows four line index entries.

Example 12–2 Line Index for a Data Storage Page

!
0004 0016 4 lines

$ # "
000D 03F2 0018 line 0: offset 03F2, 13 bytes
003A 03B8 001C line 1: offset 03B8, 58 bytes
003A 037E 0020 line 2: offset 037E, 58 bytes
003A 0344 0024 line 3: offset 0344, 58 bytes

The line index shown in Example 12–2 contains the following:

! Line index count

This field (0004) shows the number of line index entries on that page.

" Line index entries

There is a line index entry (line 0 through line 3) for each storage segment
on the page.

Offset from beginning of page to storage segment

The offset address (03F2), combined with the length entries, identifies the
location of a storage segment on the page. The location of a specific storage
segment on a page is the sum of the page address and the offset address.
This location can be represented as:

storage� segment� address = page� address+ offsetaddress

12–4 Displaying the Contents of Data Storage Pages

$ Length of storage segment (000D)

The size in bytes (000D) of the storage segment.

12.3 TSN Index for a Data Storage Page
Transaction sequence number (TSN) entries follow the final line index entry
and precede the free space entry. There is one entry for each storage segment
or storage record on the page. Each record has a TSN assigned to it to keep
track of the last transaction that updated it. The sequence of TSN index
entries corresponds to the sequence of line index entries. For example, the
third line index entry and the third TSN index entry are paired and refer to
the same storage segment.

When a new storage segment is added to a page, a line index entry is added.
All TSN entries are moved to make room for the line index, and a new
TSN entry is added. In Example 12–3, each TSN entry consists of a 4-byte
hexadecimal field (callout ! (00000000)), and identifies the transaction that
last stored, modified, or erased the storage segment (TSN 22).

To find the storage segment to which a TSN entry refers, you must note its
position in the TSN (callout " (line 0)), look at the line index entry that
corresponds positionally (callout # (line 0)), and use the offset address (callout
$ (01EA)) in the line index entry. In Example 12–3, the offset 01EA identifies
the storage segment for TSN 0.

Example 12–3 shows a line index and TSN index entries. It also shows the
relationship of the TSN index to the line index.

Example 12–3 TSN Index for a Data Storage Page

0003 0016 3 lines
$

0005 01EA 0018 line 0: offset 01EA, 5 bytes #
Line Index 0078 0172 001C line 1: offset 0172, 120 bytes

0078 00FA 0020 line 2: offset 00FA, 120 bytes

!
00000000 0024 line 0: TSN 0 "

TSN Index 00000016 0028 line 1: TSN 22
00000016 002C line 2: TSN 22

Displaying the Contents of Data Storage Pages 12–5

12.4 Locked and Unlocked Free Space for a Data Storage Page
Free space begins after the final TSN index entry and continues to the first
storage segment. The free space becomes larger when storage segments are
deleted and smaller when they are added. A portion of free space can be locked
by a transaction. Free space is allocated to storage segments from the bottom
and to locked free space from the top. The page fills as storage segments
displace free space. When the convergence of storage segment space and line
index entries leaves no usable free space, the page is full.

Each byte of locked free space is associated with a specific database attach.
Unlocked free space is not associated with any transaction. Oracle Rdb makes
these associations by using the transaction identification number (TID). A TID
is assigned when a user attaches to a database and is deassigned only when
that user detaches. The TID is not related to the TSN. The TID is stored in
each word of the locked free space, as shown in Example 12–4.

Free space is locked by the TID that created it, in case that transaction
has to roll back, for example, when a record is deleted. When a transaction
creates free space, that free space is locked by Oracle Rdb for use by only
that database attach. When the transaction needs storage space, Oracle Rdb
first attempts to use the locked free space allocated to that transaction. If
the space is inadequate, Oracle Rdb then allocates unlocked free space to that
transaction.

Locked free space is available to be claimed by other users only after the user
whose transactions locked it enters an SQL DISCONNECT statement. Locked
free space can be reclaimed when needed by the user who locked it. Locked
line indexes, however, do not work the same way as locked free space. Locked
line index entries are not used again until the user’s process detaches from
the database. This means that the same process that deletes a line cannot use
that particular line index entry again.

Example 12–4 shows the format of the locked and unlocked free space
components of a data storage page.

12–6 Displaying the Contents of Data Storage Pages

Example 12–4 Locked and Unlocked Free Space for a Data Storage Page

0001 00000154 0000 page 340, physical area 1
12B33540 0006 checksum = 12B33540

008FF4E3 21F9DB00 000A time stamp = 12-JAN-1988 08:30:03.44
0012 03BC 0012 956 free bytes, 18 locked !

0001 0016 1 line
"
0002 0000 0018 line 0: locked by 2

00000000 001C line 0: TSN 0
00020002000200020002000200020002 0020 locked space ’................’ #

0002 0030 locked space ’..’
00640064006400640064006400640064 0032 free space ’d.d.d.d.d.d.d.d.’ $
00000000000000000000000000640064 0042 free space ’d.d.............’
00000000000000000000000000000000 0052 free space ’................’

:::: (54 duplicate lines)
303000010E000001000D000000000000 03C2 free space ’..............00’
06000001000D7474656E657547383035 03D2 free space ’508Guenett......’

FEFF0100EF31303730300001 03E2 free space ’..00701ï...þ’
.
.
.

The locked and unlocked free space shown in Example 12–4 contains the
following components:

! The page header (offset 0000 through 0015)

Note that 18 bytes are locked (0012) and that 956 bytes are free (03BC).

See the examples and descriptions for the format of the page header and
line index entries in Sections 12.1 and 12.2.

" The transaction ID (TID)

Every word in locked free space is assigned to the TID of the user (0002)
who locked it. In this case, 18 bytes are locked by TID 2.

Locked space

This space begins at 0020 and ends at 0031.

$ Free space

This space begins at 0032 and ends at 03E2. (The 0064 in the free space
indicates that TID HEX 0064 had locked free space reserved at some
stage.)

Displaying the Contents of Data Storage Pages 12–7

12.5 Storage Segment Structure for a Data Storage Page
Storage segments take up most of the space on a database page. A segment
can be stored either whole (called a storage record) or fragmented. Fragmented
records consist of a primary segment and any number of secondary segments.

Oracle Rdb fragments a record when it is too large to fit on a single database
page or when a modify operation expands the record and it then becomes too
large to fit in the free space on its page. Use the RMU Analyze command
to determine if records have been fragmented. The RMU Dump command
displays the fragmented records. Section 12.7 describes fragmented records in
more detail.

Oracle Rdb stores a minimum of 10 bytes (2 bytes overhead for the record type
plus 8 bytes for the dbkey pointer) for each record on the page, so there is
always room on the page to convert the storage record or segment into the first
primary segment of a fragmented record.

The storage area is automatically extended when there is no room for new
or modified rows. The size of the extent is determined by the EXTENT IS
(extension-options) parameter of the SQL CREATE DATABASE statement.

Section 12.5.1, Section 12.5.2, and Section 12.5.3 show the relationship of three
different types of storage segments on a database page. These segments are as
follows:

• User-stored data storage segments (records), see Section 12.5.1

• List (segmented string) storage segments (records), see Section 12.5.2

• Index node storage segments (records), see Section 12.5.3

Each storage segment on a database page has a storage record header that
contains a 14-bit storage record identification number and 2-bit flags that
identify the record as fragmented or whole. The format of the rest of the
storage segment depends on whether the segment contains user-stored data,
a list, or an index node. There is a storage segment for each occurrence of a
record type.

12–8 Displaying the Contents of Data Storage Pages

12.5.1 User-Stored Data Storage Segments
Example 12–5 represents the information stored in a user-stored data storage
segment (storage record).

Example 12–5 User-Stored Data Storage Segment

" !
001A 0390 line 1: record type 26

$ #
00 0001 0392 Control information

.... 71 bytes of static data
& %

0420886874696D53353631303000010B 0395 data ’...00165Smith. .’
6E655420303231440D20847972726554 03A5 data ’Terry. .D120 Ten’
75726F636F684307209F2E7244207962 03B5 data ’by Dr.. .Chocoru’
4932C0004D3731383330484E12208B61 03C5 data ’a. .NH03817M.À2I’

'
00F032006B0E77 03D5 data ’w.k.2ð.’

A user-stored data storage segment shown in Example 12–5 contains the
following components:

! The storage record type

Each storage segment is identified by its storage record (hexadecimal 1A)
or number (26). This is the RDB$RELATION_ID value that is stored in
RDB$RELATIONS system relation for this table. Oracle Rdb uses this
internal number to find the storage segment. This number is determined
by the order in which tables are created in the database.

" Frag flags

The frag flags indicate whether a segment is whole (the value of the flag is
00) or fragmented. If the record has been fragmented, the first bit indicates
the presence of a following segment and the second bit, the presence of
a preceding fragment. The first segment is called the primary storage
segment and the others are called secondary storage segments. In the case
of the primary storage segment, the frag flags would indicate 10 (following
segment, no preceding segment). A secondary storage segment with a
following segment would be 11. The final secondary storage segment would
be 01.

The top 2 bits (00 to the left of the vertical bar) of the following word are
the frag flags:

000D = 00 | 00 0000 0000 1101

The total length of pointer clusters

Displaying the Contents of Data Storage Pages 12–9

For Oracle Rdb, the total cluster length is always set to one (0001).

$ The cluster count

For Oracle Rdb, the number of pointer clusters is always null (00).

% User data

This portion of the storage record contains user-supplied data (offset 0395
through 03DB). If the table to which this row belongs has compression
enabled, the first byte is the compression byte (0B in this case), followed
by the 2-byte record version number (0001), and then the user data. If the
table has compression disabled, then there are no compression bytes in the
user-stored data storage segment.

& The record version number

Oracle Rdb allows for dynamic record modification. This number
determines what version (0001) of the record definition Oracle Rdb will use.

' A null bit vector

The bit vector (00F0) consists of 1 bit for each column in a record. If a bit
is set, the value for the corresponding column in the row is missing.

12.5.2 List Storage Segments
The SQL LIST OF BYTE VARYING data type is a special data type designed
to handle large pieces of data with a segmented internal structure. Except for
the length of the list segments, Oracle Rdb does not know anything about the
data contained in a list. The list column in a table contains the dbkey pointer
to the list but not the actual list contents. This is different from a data row
that is defined as any other type of data type in which the column contains the
data.

Lists use the LIST OF BYTE VARYING data type, which is implemented as
a list of record segments. Oracle Rdb defines a special name to refer to the
segments of a list similar to the way column names refer to columns in a
database. The name denotes a value of a segment and is named RDB$VALUE.
Because the lengths of segments can vary from 0 to 64K bytes, Oracle Rdb
defines a name for the length of a segment as RDB$LENGTH.

Oracle Rdb supports the following three different list formats. See the LIST
OF BYTE VARYING data type description in the Oracle Rdb7 SQL Reference
Manual for a graphical description of the first two list formats.

• Chained format

12–10 Displaying the Contents of Data Storage Pages

This type of list format is used for list data stored on all devices except
write-once storage areas on write-once, read-many (WORM) devices. See
Example 12–6. This is the default format if you define the RDMS$USE_
OLD_SEGMENTED_STRING logical name or the RDB_USE_OLD_
SEGMENTED_STRING configuration parameter.

• Indexed format

The default list format for storing list data for V4.1 and higher versions of
Oracle Rdb and for storing list data on write-once storage areas on WORM
devices even if the RDMS$USE_OLD_SEGMENTED_STRING logical name
or RDB_USE_OLD_SEGMENTED_STRING configuration parameter is
defined to use the chained list format for storing lists on read/write media.
See Examples 12–7, 12–8, and 12–10.

• Single-segment format

A list format supported since V1.0 of Oracle Rdb if the amount of data
can fit within the list (segmented string) buffer, which is controlled by
the RDMS$BIND_SEGMENTED_STRING_BUFFER logical name or
the RDB_USE_OLD_SEGMENTED_STRING configuration parameter.
The logical name or configuration parameter must not be defined to use
the single-segment list format. See the LIST OF BYTE VARYING data
type description in the Oracle Rdb7 SQL Reference Manual for more
information. See Example 12–9.

The chained list format is comprised of a list column in a table row that
contains a dbkey pointer to the first data segment of the list. Each storage
segment contains 5 bytes of control information and a dbkey pointing to the
next segment (8 bytes); therefore, each list data portion is limited to 65,522
bytes (65,535 bytes � 13 bytes). In addition, the first storage segment includes
some special overhead to describe the entire list: total length of the entire
list (a QUADWORD), the total number of segments (a LONGWORD), and the
length of the longest segment (a WORD). These 14 bytes (8 + 2 + 4 bytes)
of overhead are subtracted from the size of the data segment (65,522 bytes)
to calculate the size of the first data storage segment (65,508 bytes). Each
subsequent data storage segment is limited to 65,522 bytes. See Example 12–6.

The indexed list format is comprised of a list column in a table row containing
a dbkey that points to the first segment of the list. The first segment contains
the following: some overhead (12 bytes), the dbkey to the next pointer segment
(8 bytes), the number of dbkeys (4 bytes), the total string length (8 bytes), the
number of data segments (4 bytes), the number of pointer segments (4 bytes),
the longest segment (4 bytes) (for a total of 44 bytes plus an additional 5 bytes
of control information); and a directory of all the dbkey pointers (8 bytes)
paired with the segment length (4 bytes) for each data segment in the list. So

Displaying the Contents of Data Storage Pages 12–11

the first segment contains 65,486 bytes (65,535 � 44 � 5 bytes) of remaining
space to store an array of 12-byte data segment (dbkey and segment length
pairs) pointers.

If this first directory segment fills to capacity, a second directory segment is
created that contains a dbkey for the next pointer segment (8 bytes), number
of dbkeys (4 bytes), and a continuation of the directory of the dbkey/segment
length pointers (8 bytes + 4 bytes) pointing to the data segments in the list.
Therefore, the second and subsequent directory segments contain 65,535 � 12
� 5 bytes or 65,518 bytes of space to store an array of 12-byte data segment
(dbkey and segment length pairs) pointers. Each data segment contains 5
bytes of control information leaving 65,530 bytes (65,535 bytes � 5 bytes) of
space in which to store list or data. See Examples 12–7, 12–8, and 12–10.

The single-segment list consists of a type field that is used to differentiate it
from primary segments and data segments. This type of format omits the use
of pointers and other overhead and allows a single I/O operation to read the
segment. See Example 12–9.

Lists can be stored in more than one storage area as defined by the storage
map definition for the storage areas containing these lists. For each storage
area associated with a table, there is information stored that points to the
actual list.

Prior to Oracle Rdb V6.0, all LIST OF BYTE VARYING (segmented string)
records were written to the database as record type zero (0). This meant that
the RMU Dump command could not distinguish a pure data record from a
structure record.

Beginning with Oracle Rdb V6.0, list structure records are typed, allowing the
RMU Dump command to format them as shown in Examples 12–6 through
12–10. You can inspect the page display to look for the pointer to the list or
display the contents of the actual list for the storage areas defined to contain
this type of data. For another way to display the actual contents of a list, see
the sections on lists in the Oracle Rdb7 SQL Reference Manual and the Oracle
Rdb7 Guide to SQL Programming.

The following list describes the five structure record types and the data
segment:

1. BLOB (binary large object) primary chained segment

This first segment of the chained style lists contains statistics as well as
data and a pointer to the next segment. This type of segment is referenced
by the table row. See Example 12–6.

12–12 Displaying the Contents of Data Storage Pages

Example 12–6 Primary and Secondary Chained Segment

!
2008 01B0 line 11: blob primary chained segment

00 0001 01B2 Control information
.... total blob segment size: 43

"
0001 00000096 000A 01B5 next chained segment 1:150:10

#
00000000 00000033 01BD total length of segments 0;51

$
00000003 01C5 number of segments 3

%
0015 01C9 length of longest segment 21
&

65657268742061207369207369687409 01CB data ’.this is a three’
656E696C20 01DB data ’ line’

2009 01E0 line 10: blob secondary chained segment
00 0001 01E2 Control information

.... total blob segment size: 20
0001 00000096 0009 01E5 next chained segment 1:150:9

6E6F69747069726373656409 01ED data ’.description’
00 01F9 padding ’.’

2009 01FA line 9: blob secondary chained segment
00 0001 01FC Control information

.... total blob segment size: 26
FFFF FFFFFFFF FFFF 01FF next chained segment -1:-1:-1

736162617461642065687420726F6609 0207 data ’.for the databas’
2065 0217 data ’e ’

00 0219 padding ’.’

The primary and secondary chained segment shown in Example 12–6
contains the following information:

• The data area contains the dbkey of the first segment and either
FFFFFFFF FFFFFFFF or 00000000 00000000, depending on whether
there is a list actually stored.

• The primary and secondary chained segments contain the following
hexadecimal information as read from right to left:

! The first 5 bytes

These bytes are the record type and frag flags and 3 bytes of control
information.

" The next 8 bytes

These bytes are the dbkey of the next segment. If it is the last
segment, then the dbkey is –1:–1:–1.

The next 8 bytes

Displaying the Contents of Data Storage Pages 12–13

These bytes provide the total length of the list and are part of the
information block.

$ The next 4 bytes

These bytes provide the total number of segments in the list and
are part of the information block.

% The next 2 bytes

These bytes provide the length of the longest segment in the list
and are part of the information block.

& The actual data in the list

2. BLOB secondary chained segment

Subsequent segments of the chained style lists contain only data and a
pointer to the next segment. This type of segment is only referenced by
other chained segments. See Example 12–6.

3. BLOB primary indexed segment

The first segment of the indexed style list contains statistics as well as
pointers to data segments. This type of segment is referenced by the table
row. See Example 12–7.

Example 12–7 Primary Indexed Segment

!
200B 002C line 0: blob primary pointer segment

00 0001 002E Control information
.... total blob segment size: 956

"
00000000 0031 segment type 0
00000000 0035 MBZ ’....’
00000000 0039 unused ’....’

#

(continued on next page)

12–14 Displaying the Contents of Data Storage Pages

Example 12–7 (Cont.) Primary Indexed Segment

0001 000001BD 0007 003D next pointer segment 1:445:7
$

0000004C 0045 number of dbkeys 76
%

00000000 0000090F 0049 total length of segments 0;2319
&

00000055 0051 number of data segments 85
'

00000002 0055 number of pointer segments 2
(

0000001C 0059 length of longest segment 28
)

00000012 0001 00000096 0003 005D data segment 1:150:3 (len 18)
0000000C 0001 00000096 0004 0069 data segment 1:150:4 (len 12)

.

.

.
0000001C 0001 000001BC 0010 03D5 data segment 1:444:16 (len 28)
0000001C 0001 000001BC 0011 03E1 data segment 1:444:17 (len 28)

00 03ED padding ’.’

The primary indexed segment shown in Example 12–7 contains the
following hexadecimal information as read from right to left:

! The first 5 bytes

These bytes are the record type and frag flags and 3 bytes of control
information.

" The next 12 bytes

These bytes are the overhead bytes.

The next 8 bytes

These bytes are the dbkey of the next pointer segment. If it is the last
segment, then the dbkey is –1:–1:–1.

$ The next 4 bytes

These bytes provide the number of dbkeys.

% The next 8 bytes

These bytes provide the total string length.

& The next 4 bytes

These bytes provide the number of data segments.

' The next 4 bytes

Displaying the Contents of Data Storage Pages 12–15

These bytes provide the number of pointer segments.

(The next 4 bytes

These bytes provide the length of the longest segment.

) The next 12 bytes and subsequent groups of 12 bytes

These bytes are the directory of the dbkey/segment length pointers (8
bytes + 4 bytes) pointing to the data segments in the list.

4. BLOB secondary indexed segment

Subsequent segments of the indexed style list contain only pointers to
data segments. This type of segment is only referenced by other indexed
segments. See Example 12–8.

Example 12–8 Secondary Indexed Segment

!
200C 029A line 7: blob secondary pointer segment

00 0001 029C Control information
.... total blob segment size: 120

"
FFFF FFFFFFFF FFFF 029F next pointer segment -1:-1:-1

#
00000009 02A7 number of dbkeys 9

$

0000001C 0001 000001BC 0012 02AB data segment 1:444:18 (len 28)
0000001C 0001 000001BC 0013 02B7 data segment 1:444:19 (len 28)
0000001C 0001 000001BD 0000 02C3 data segment 1:445:0 (len 28)
0000001C 0001 000001BD 0001 02CF data segment 1:445:1 (len 28)
0000001C 0001 000001BD 0002 02DB data segment 1:445:2 (len 28)
0000001C 0001 000001BD 0003 02E7 data segment 1:445:3 (len 28)
0000001C 0001 000001BD 0004 02F3 data segment 1:445:4 (len 28)
0000001C 0001 000001BD 0005 02FF data segment 1:445:5 (len 28)
00000004 0001 000001BD 0006 030B data segment 1:445:6 (len 4)

00 0317 padding ’.’

The secondary indexed segment shown in Example 12–8 contains the
following hexadecimal information as read from right to left:

! The first 5 bytes

These bytes are the record type and frag flags and 3 bytes of control
information.

" The next 8 bytes

These bytes are the dbkey of the next pointer segment. If it is the last
segment, then the dbkey is –1:–1:–1.

12–16 Displaying the Contents of Data Storage Pages

The next 4 bytes

These bytes provide the number of dbkeys.

$ The next 12 bytes and subsequent groups of 12 bytes

These bytes are the continuation of the directory of the dbkey/segment
length pointers (8 bytes + 4 bytes) pointing to the data segments in the
list.

5. BLOB simple data segment

This type of segment is referenced by the table row and contains only the
data. This style of pointer segment is used when only a single segment
exists for this list. See Example 12–9.

Example 12–9 Simple Data Segment

!
200A 0146 line 19: blob simple data segment

00 0001 0148 Control information
.... total blob segment size: 28

"
FFFFFFFE 014B segment type -2

#
0000010C0001FFFF000019FF0000010C 014F data ’................’

3FFFFFFF00000011 015F data ’.......?’
00 0167 padding ’.’

The simple data segment shown in Example 12–9 contains the following
hexadecimal information as read from right to left:

! The first 5 bytes

These bytes are the record type and frag flags and 3 bytes of control
information.

" The next 4 bytes

These bytes are the segment type. In this case, –2 represents a
single-segment list format.

The actual data in the list

6. Data segment

Pure data segments still remain as record type of zero (0). This type of
segment is only referenced by the indexed segments. See Example 12–10.

Displaying the Contents of Data Storage Pages 12–17

Example 12–10 Data Segments Referenced by Primary and Secondary
Indexed Segments

!
0000 0318 line 6: record type 0

00 0001 031A Control information
.... 4 bytes of static data

"
20202020 031D data ’ ’

00 0321 padding ’.’

0000 0322 line 5: record type 0
00 0001 0324 Control information

.... 28 bytes of static data
61616161616161616161616161616109 0327 data ’.aaaaaaaaaaaaaaa’

616161616161616161616161 0337 data ’aaaaaaaaaaaa’
00 0343 padding ’.’

The pure data segment shown in Example 12–10 contains the following
hexadecimal information as read from right to left:

! The first 5 bytes

These bytes are the record type and frag flags and 3 bytes of control
information.

" The actual data in the list

Lists written prior to V6.0 still have a record type of zero (0) and therefore
remain unformatted by the RMU Dump command. This in no way affects
the usage of lists by applications.

Restriction

If a list segment is fragmented, the structure information cannot be
formatted by the RMU Dump command.

12.5.3 Index Node Storage Segments
Oracle Rdb allows you to define indexes on tables to more quickly retrieve
records. Index nodes are database records that are used to locate data records
by key value. Oracle Rdb supports two kinds of indexes—sorted and hashed
indexes:

• Sorted indexes (ranked and non-ranked) can be placed in either uniform or
mixed page format storage areas

• Hashed indexes can be placed only in mixed page format storage areas

12–18 Displaying the Contents of Data Storage Pages

The pages assigned to an index are formatted in the same manner as data
pages. However, the storage segments of an index contain index nodes instead
of data records.

The following table shows how the index node structure is dependent on the
type of index:

Ranked sorted indexes contain the following types of nodes:

• Index key nodes

Index key nodes contain unique index keys and pointers to other nodes. A
sorted index structure can have many levels of index key nodes. Level 1
nodes, also known as leaf nodes, point to rows in the table or to overflow
nodes. Level 2 (and above) nodes point to lower-level index nodes.

With ranked sorted indexes, Oracle Rdb compresses duplicates using a
byte-aligned bitmap compression. It compresses a list of dbkeys that point
to data rows with the same index values and stores the list in the index key
nodes. If you store duplicate entries, Level 1 nodes contain the compressed
list of dbkeys.

• Overflow nodes

Oracle Rdb creates overflow nodes when the compressed list of duplicates
in the index key node overflows that node. The overflow nodes contain a
bitmap-compressed list of dbkeys and pointers to the next overflow node.

Non-ranked sorted indexes contain the following types of nodes:

• Index key nodes

Index key nodes contain unique index keys and pointers to other nodes. An
index structure can have many levels of index key nodes. Level 1 nodes,
also known as leaf nodes, point to rows in the table or to duplicate index
rows. Level 2 (and above) nodes point to lower-level index nodes.

• Duplicate nodes

Oracle Rdb creates duplicate index nodes when you define the index
without using the UNIQUE keyword and you store a duplicate key value.
The duplicate nodes contain a list of the duplicate row dbkeys.

Hashed indexes contain the following three kinds of index node records:

• System records

• Hash buckets

• Duplicate node records

Displaying the Contents of Data Storage Pages 12–19

Because hashed indexes are restricted to storage areas with mixed page
format, each page in the storage area has a system record that points to the
hashed index records (hash buckets) on the page. See Section 12.5.3.2 for
more information about system records. System records are not used by sorted
indexes stored in a mixed page format storage area. For this reason, system
records are considered part of the hashed index structure.

12.5.3.1 Sorted Index Node Records
For uniform page format storage areas, one or more sorted indexes and their
structures defined for the same table are stored in clumps of pages and can be
within the same clump as long as each index is defined for the same table. In
a single-file database, the name of the logical area is the same as the name of
the first index defined for that table. If this first index is deleted, the name
of the logical area remains unchanged. For a multifile database, each sorted
index has a distinct logical area name.

For each index in a table, there is a separate B-tree index structure. Each
B-tree structure is created by linking index nodes together by means of dbkeys.

Because sorted index nodes are themselves records, they are also subject to
record locking.

Note

If you define an index node that is larger than a database page, the
node is fragmented when stored; its size is not increased or decreased.
For performance reasons, index nodes larger than a database page are
not recommended.

Example 12–11 shows an index node record with the index keys that make
up an index record for a non-ranked sorted index. This index record contains
an index key called ADMN at offset 0218 as the first index key shown in the
DEPARTMENTS_INDEX sorted index.

12–20 Displaying the Contents of Data Storage Pages

Example 12–11 Sorted Index Node Segment for a Non-Ranked Sorted Index

$ RMU/DUMP/AREA=DEPARTMENTS /START=2/END=3 MF_PERSONNEL
.
.
.

.... total B-tree node size: 430
!" #
004E 2003 0206 line 2: (50:2:2) index: set 78

004F FFFFFFFF FFFF 020A owner 79:-1:-1 $
00BC 0212 188 bytes of entries %
8200 0214 level 1, full suffix &
' (
00 05 0216 5 bytes stored, 0 byte prefix

) 4E4D444100 0218 key ’.ADMN’
32 06 021D pointer 79:2:1 +>
01 04 021F 4 bytes stored, 1 byte prefix

00 pfx ’.’
4C454C45 0221 key ’ELEL’

34 06 0225 pointer 79:2:3
.
.
.

03 02 02CB 2 bytes stored, 3 byte prefix
555300 pfx ’.SU’

4557 02CD key ’WE’
0412 07 02CF pointer 79:3:17

00000000000000000000000000000000 02D2 unused ’................’ +?
:::: (12 duplicate lines)

0000000000000000 03A2 unused ’........’
FFFF FFFFFFFF FFFF 03A4 next node: -1:-1:-1 +?

0000000000000000 03AC MBZ ’........’
.
.
.

The size of index node storage segments is determined by the size you specify
when you create the index with the SQL CREATE INDEX statement.

The index node record shown in Example 12–11 contains:

! Frag flags

The frag flags indicate whether a segment is whole (the value of the flag is
00) or fragmented. If the record has been fragmented, the first bit indicates
the presence of a following segment and the second bit indicates the
presence of a preceding fragment. The first segment is called the primary
storage segment and the others are called secondary storage segments. In
the case of the primary storage segment, the frag flags would indicate 10
(following segment, no preceding segment). A secondary storage segment

Displaying the Contents of Data Storage Pages 12–21

with a following segment would be 11. The final secondary storage segment
would be 01.

" Storage set ID (set)

This number (4E) identifies the index to which an index node belongs. This
is the RDB$INDEX_ID column value stored in the RDB$INDICES system
table and known as the logical area number of the index.

Storage record type ID

Each storage segment is identified by its storage record number (2003).
Oracle Rdb uses this internal number to indicate that this segment is a
B-tree node.

$ Uncompressed owner dbkey (owner)

The uncompressed owner dbkey field (004F FFFFFFFF FFFF) identifies
the table or owner of the node. The logical area number (LNO) and page
number (PNO) are always –1:–1.

% Data region length

The number of bytes for the index scroll (00BC) or 188 bytes. The index
scroll is the portion of the index node in which all the data contained in
an index node for a particular record resides.

& Level type

The level (8200) of the B-tree structure at which the index node resides.
The value 8000 represents a full suffix. If there were suffix compression for
the level 1 node, the value would be 200. Level 1 is the bottom level of the
B-tree structure. This entry also shows if Oracle Rdb has compressed the
suffix of the data values stored in a node (level 1 nodes do not have suffix
compression; all other levels do).

The following items comprise the index scroll portion of the index node. The
index scroll shown in Example 12–11 contains key entries, each of which
includes:

' Prefix length

The length of the prefix from the previous entry (00).

(Key length

The length of the data in the index node entry (05).

) Key data

The actual data (minus the prefix) (4E4D444100). The first entry of each
index node contains a noncompressed key value. Other entries may contain
compressed key values.

12–22 Displaying the Contents of Data Storage Pages

+> Compressed dbkey

The dbkey pointer to a data record, to a duplicate index node, or to the
index node at the next level of the B-tree structure. In this case, this
compressed dbkey (32,06) expands to a dbkey pointer (79:2:1), that points
to a data row on this same page at line entry 1, but is not shown in this
example.

+? Unused space

Space that is currently not in the scroll (offset 02D2 through 03CC).

+@ The uncompressed dbkey pointer to the next node

The dbkey pointer (FFFF FFFFFFFF FFFF) to the next index node in the
B-tree structure. The dbkey pointer –1:–1:–1 indicates that there is no
other node in the B-tree structure to which to point.

Oracle Rdb automatically balances index nodes to minimize the number
of levels in the tree. Balancing also tends to keep the depth of the index
relatively uniform. In large indexes, each level can result in an I/O operation
or disk access.

For sorted non-ranked indexes, when two or more identical keys exist in an
index, that key’s scroll entry points to a duplicate node instead of a data row.
The duplicate index node lists the uncompressed dbkeys for each row that has
the same key value. Duplicate index nodes can be chained together if there are
many duplicate key values.

For sorted ranked indexes, when two or more identical keys exist in an
index, that key’s scroll entry points to nothing (-1:-1:-1) and the dbkeys of
the duplicates are stored in compressed form in the data section of the entry.
If there are enough duplicates to overflow the node, Oracle Rdb creates an
overflow node and treats it as an extension of the data section.

Example 12–12 shows an index node record with the index keys that make up
an index record for a ranked sorted index, SH_EMP_ID_RANK. Two index keys
are shown in their entirety. The first, containing duplicates, is 00173 at offset
009D; the second, a unique key, is 00319 at offset 0298.

Displaying the Contents of Data Storage Pages 12–23

Example 12–12 Sorted Index Node Segment for a Ranked Sorted Index

$ RMU/DUMP/AREA=SALARY_HISTORY MF_PERSONNEL
.
.
.

.... total B-tree node size: 430
003D 200D 0088 line 2 (51:116:2) index: set 61

0000 FFFFFFFF FFFF 008C owner 0:-1:-1
00DF 0094 223 bytes of entries
8200 0096 level 1, full suffix

! " # $
40 00 06 001A 0098 6 bytes stored, 0 byte prefix

333731303000 009D key ’.00173’
0F 2D 00A3 overflow pointer -1:-1:-1 %

0008 00A5 entry cardinality 8. &
0001 00A7 leaf cardinality 0. '

5111 60 00A9 reference pointer 81:0:0 (
0009 00AC 9 byte bitmap containing 8 records)

0051 00000004 0016 00AE duplicate record 81:4:22
0051 00000004 0017 00AE duplicate record 81:4:23
0051 00000005 0001 00B3 duplicate record 81:5:1
0051 00000005 0002 00B3 duplicate record 81:5:2
0051 00000005 0003 00B3 duplicate record 81:5:3
0051 00000005 0004 00B3 duplicate record 81:5:4
0051 00000005 0005 00B3 duplicate record 81:5:5
0051 00000005 0006 00B3 duplicate record 81:5:6

40 05 01 0012 00B7 1 byte stored, 5 byte prefix
.
.
.

00 03 03 000B 0293 3 bytes stored, 3 byte prefix
303000 pfx ’.00’

393133 0298 key ’319’
511E0D 66 029B pointer 81:29:12 %

0001 029F entry cardinality 1. &
0000 02A1 leaf cardinality 0.

.

.

.

The following list explains those items in Example 12–12 that are specific to
ranked sorted indexes:

! Flag field

Used by Oracle Rdb to determine if the entry contains a bitmap of duplicate
dbkeys and the length of the cardinality fields.

" Prefix length

The length of the prefix from the previous entry. Because this is the first
entry in the scroll of a node, this length is 0.

12–24 Displaying the Contents of Data Storage Pages

Separator length

The length of the separator minus the prefix length. In this example, the
separator length is 06.

$ Entry length

The length of the variable length section of the entry (001A). (The variable
length section of this entry starts at offset 009D and continues to offset
00B7, which is the beginning of the next entry.) Because the fixed length
section of an entry is always 5 bytes, add 5 bytes to the entry length to
calculate the total length of an entry.

% Dbkey

When an entry contains duplicates but there are not enough duplicates to
overflow the leaf node, the dbkey is null (-1:-1:-1), as shown by the first
% callout. If duplicates overflow the leaf node, the dbkey points to the
overflow node.

In a unique entry, the dbkey points to a data record (81:29:12), as shown by
the second % callout.

& Entry cardinality

The total number of entries. This includes the duplicate entries stored
within the leaf node and any overflow nodes. The first & callout shows 8
entries, the second shows 1.

' Leaf cardinality

The number of leaf nodes pointed to by this node (0).

(Reference pointer

The starting point of the byte-aligned bitmap compressed (BBC) index
segment.

) Bitmap size and number of records

The length of the bitmap that holds the compressed dbkeys (9 bytes) and
the number of entries in this node (8).

12.5.3.2 Hashed Index Node Records
Storage areas with mixed page format can contain the rows of two or more
tables and associated hashed indexes. To store rows of two or more tables and
associated hashed indexes in the same storage area, use the PLACEMENT
VIA INDEX option of the SQL CREATE STORAGE MAP or ALTER STORAGE
MAP statements and the STORE clause of the CREATE INDEX or ALTER
INDEX statements).

Displaying the Contents of Data Storage Pages 12–25

In Example 12–13, the RMU Dump Area command displays the EMPIDS_
LOW storage area. The EMPLOYEES and JOB_HISTORY rows are clustered
together using two hashed indexes and two storage maps, each specifying the
appropriate index with the PLACEMENT VIA INDEX option. Data page 50
contains a system record with two dbkeys, each pointing to the respective
hash bucket or buckets for the defined hashed indexes, EMPLOYEES_HASH
and JOB_HISTORY_HASH. For the EMPLOYEES_HASH index, the hash
bucket has a single dbkey that points to the single EMPLOYEES row for Janet
Kilpatrick. For the JOB_HISTORY_HASH index, the hash bucket has a single
dbkey that points to a duplicate node record because duplicates are allowed.
The duplicate node record contains the three dbkeys for each of the three JOB_
HISTORY rows that belong to Janet Kilpatrick.

Example 12–13 Storage Area Page with Mixed Page Format Containing Hashed Index Node
and Data Storage Records

$ RMU/DUMP/AREA=EMPIDS_LOW/OUTPUT=LOW_EMPIDS_DUMPALL.TXT MF_PERSONNEL

0002 00000032 0000 page 50, physical area 2
8A336CF1 0006 checksum = 8A336CF1

009714FB 84BDFF20 000A time stamp = 20-AUG-1995 15:59:57.97
0000 021C 0012 540 free bytes, 0 locked

0008 0016 8 lines
0012 03DC 0018 line 0: offset 03DC, 18 bytes
004D 038E 001C line 1: offset 038E, 77 bytes
0020 036E 0020 line 2: offset 036E, 32 bytes
002B 0342 0024 line 3: offset 0342, 43 bytes
0020 0322 0028 line 4: offset 0322, 32 bytes
002B 02F6 002C line 5: offset 02F6, 43 bytes
005C 029A 0030 line 6: offset 029A, 92 bytes
0025 0274 0034 line 7: offset 0274, 37 bytes

00000028 0038 line 0: TSN 40
00000010 003C line 1: TSN 16
00000010 0040 line 2: TSN 16
00000028 0044 line 3: TSN 40
00000028 0048 line 4: TSN 40
00000028 004C line 5: TSN 40
00000028 0050 line 6: TSN 40
00000028 0054 line 7: TSN 40

00000000000000000000000000000000 0058 free space ’................’
:::: (32 duplicate lines)

00000000000000000000 0268 free space ’..........’

(continued on next page)

12–26 Displaying the Contents of Data Storage Pages

Example 12–13 (Cont.) Storage Area Page with Mixed Page Format Containing Hashed Index
Node and Data Storage Records

001D 0274 line 7: record type 29 %
00 0001 0276 Control information

.... 32 bytes of static data
3F9980004D4750413736313030000111 0279 data ’...00167APGM...?’
C834363130304E4D424D09008889A4FF 0289 data ’.¤....MBMN00164È’

00 0299 padding ’.’

2007 029A line 6: duplicate hash node. #
.... total duplicate node size: 92

FFFF FFFFFFFF FFFF 029E duplicate overflow -1:-1:-1
0045 00000032 0007 02A6 duplicate record 69:50:7
0045 00000032 0005 02AE duplicate record 69:50:5
0045 00000032 0003 02B6 duplicate record 69:50:3

001D 02F6 line 5: record type 29 %
00 0001 02F8 Control information

.... 38 bytes of static data
A49540004D4750413736313030000124 02FB data ’$..00167APGM.@.¤’
4C45544D00887D88F44780000086DF6A 030B data ’jß....Gô.}..MTEL’

C03834323030 031B data ’00248À’
00 0321 padding ’.’

0042 2005 0322 line 4: bucket for hash index 66 "
.... total hash bucket size: 32

FFFF FFFFFFFF FFFF 0326 bucket overflow -1:-1:-1
00 032E flags 0

00000003 032F duplicate count 3
FFBE 00000032 0006 0333 duplicate node 66:50:6

06 033B key len: 6 bytes
373631303000 033C key: ’.00167’

001D 0342 line 3: record type 29 %
00 0001 0344 Control information

.... 38 bytes of static data
1EB140004D4750413736313030000124 0347 data ’$..00167APGM.@±.’
5456474D0089A436152FC00000887E52 0357 data ’R~...À/.6¤..MGVT’

C03736323030 0367 data ’00267À’
00 036D padding ’.’

003A 2005 036E line 2: bucket for hash index 58 "
.... total hash bucket size: 32

FFFF FFFFFFFF FFFF 0372 bucket overflow -1:-1:-1
00 037A flags 0

00000001 037B duplicate count 1
003F 00000032 0001 037F pointer 63:50:1

06 0387 key len: 6 bytes
373631303000 0388 key: ’.00167’

(continued on next page)

Displaying the Contents of Data Storage Pages 12–27

Example 12–13 (Cont.) Storage Area Page with Mixed Page Format Containing Hashed Index
Node and Data Storage Records

001A 038E line 1: record type 26 $
00 0001 0390 Control information

.... 72 bytes of static data
69727461706C694B3736313030000110 0393 data ’...00167Kilpatri’
3334310B208574656E614A0420836B63 03A3 data ’ck. .Janet. .143’
6C72614D0520A02E745320656E695020 03B3 data ’ Pine St.. .Marl’
04C000463635343330484E12208D776F 03C3 data ’ow. .NH03456F.À.’

08F0310057C79ED7 03D3 data ’.ÇW.1.’
00 03DB padding ’.’

2001 03DC line 0: SYSTEM record !
02 000E 03DE 14 bytes in 2 sets/dynamic items
0032 06 03E1 6 bytes, storage set type 50

12 2E 03E4 next 58:50:2
00 03E6 owner 57:50:0

0039 07 03E7 7 bytes, storage set type 58
0094 5B 03EA next 66:50:4

00 03ED owner 57:50:0

FFFFFFFF 03EE snap page pointer -1
00000028 03F2 snap pointer TSN 40

0000 03F6 MBZ ’........’
00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

The amount of space used by hashed index structures on a data page is
determined by the number of hashed indexes defined and stored in the storage
area, the number of entries in the hash bucket, the number of duplicate
records, and the overhead for each record type. See the Oracle Rdb7 Guide to
Database Performance and Tuning for estimating the size of a hash structure
on a data page.

The hashed index structure contains the items shown in Example 12–13
as callouts 1, 2, and 3, followed by the data rows. All are described in the
following list:

! SYSTEM record, line 0

The system record has as many entries in it as there are hashed indexes
defined and stored on a data page within the storage area. The system
record entry of a hashed index requires 6 bytes to 10 bytes (compressed)
per pointer to each hash bucket plus 4 overhead bytes. The line index
entry actually indicates that the system record contains two pointers for a

12–28 Displaying the Contents of Data Storage Pages

total of 18 bytes. The system record provides one level of indirect action in
the event that a hash bucket cannot be stored on the target page.

" Hash bucket, lines 2 and 4

Each hash bucket contains a fixed header and one hash element for each
unique key value mapped to the page. The fixed header includes the
following components for a total of 13 bytes:

• Type—2 bytes and frag flags, 2005 is the type

• ID—2 bytes, logical area number (LNO)

• Overflow pointer—8 bytes

• Flags—1 byte, reserved for future use and always zero

Each entry in the hash bucket requires 12 bytes plus the key size plus the
key length plus the null bit vector size. If the key length for EMPLOYEE_
ID is 1 byte and the key size is 5 bytes long plus 1 byte for the null bit
vector or 6 bytes, then the total size of the hash entry is 19 bytes. Each
hash element or entry in the hash bucket consists of the following:

• A duplicate count—4 bytes

• A dbkey pointer to the value or to the duplicates node—8 bytes

• The key size—1 byte

• The key value and missing value indicator—n+1 bytes

n represents the key value, which varies in size according to the value
of the key and the 1 byte is the missing value indicator.

For example, one hash element for the EMPLOYEES_HASH hashed index
based on the EMPLOYEE_ID column is calculated to require 4+8+1+(5+1)
or 19 bytes. The fixed header is calculated as 13 bytes. Because there is
only one hash element in the hash bucket, the hash bucket size is 13 bytes
plus 19 bytes or 32 bytes as shown in line index 2 and line entry 2. The
hash bucket size for the JOB_HISTORY_HASH hashed index, which also
has only one hash element that points to a duplicate node, is 32 bytes
as shown in line index 4 and line entry 4. Therefore, for this page, both
the EMPLOYEE_HASH and JOB_HISTORY_HASH hash buckets total 64
bytes in size.

Duplicate node record, line 6

If duplicates are allowed, each duplicate node record is 92 bytes. Each
duplicate node record contains sufficient space to hold pointers to a
maximum of 10 duplicate records; for every 10 duplicate records, another
duplicate node record is created and pointed to by the previous duplicate

Displaying the Contents of Data Storage Pages 12–29

node record. No duplicate records are allowed in the EMPLOYEES_
HASH hashed index. There is one duplicate node record in the JOB_
HISTORY_HASH hashed index that contains three pointers to the three
JOB_HISTORY rows for employee Janet Kilpatrick and requires 92 bytes.

$ The EMPLOYEES data row for Janet Kilpatrick, line 1

There is one EMPLOYEES row stored on this page. It is 80 bytes in length.
It has the potential of being 117 bytes long (uncompressed) plus 5 overhead
bytes for a total of 122 bytes. (See the Oracle Rdb7 Guide to Database
Design and Definition to estimate the number of overhead bytes for data
rows.) Line entry 1 indicates that the EMPLOYEES row is actually 72
bytes in size (compressed), including row overhead (number of compression
bytes, version number, and number of null bytes) plus 5 bytes of data
record overhead for a total of 80 bytes as shown in line index 1.

% The JOB_HISTORY data rows for Janet Kilpatrick, lines 3, 5, and 7

There are three JOB_HISTORY rows that belong to Janet Kilpatrick on
this page. Each is 34 bytes long with 4 overhead bytes per row for a total
of 114 bytes on the page. Line entries 3, 5, and 7 indicate that JOB_
HISTORY rows are 38, 38, and 32 bytes in size, respectively (compressed),
including row overhead (number of compression bytes, version number, and
number of null bytes) plus 5 bytes of data record overhead. The line index
entries indicate that the JOB_HISTORY rows are therefore 43, 43, and 37
bytes long for a total of 123 bytes on the page.

In a hashed index scheme, the key value is converted mathematically to a
relative page number in the storage area of a particular table.

A hash bucket is a data structure that maintains information about the
contents of a row (its search key), and a list of internal pointers (called
database keys or dbkeys) to rows that contain the search key. To access a
row by using the hashed index, Oracle Rdb first searches the bucket, finds the
appropriate dbkeys based on its search key, and fetches the data row. Hash
buckets can only occur in an area that has a system record, which is why
hashed indexes must be stored in storage areas with mixed page format.

Hashing, also known as hash addressing, provides fast and direct access to a
specific row. Access is based on a given value of some set of columns in the row
(called the search key). Hashing provides an alternative to the B-tree or sorted
index. It is most beneficial for exact-match, direct access when you can supply
the entire search key on which the hashed index is defined, such as a social
security number. For these types of access, I/O operations can be significantly
reduced. This reduction in I/O operations is particularly useful for tables with
many rows and large indexes. For example, to retrieve a row by using a sorted
index that is four levels deep in the B-tree structure, Oracle Rdb may need to

12–30 Displaying the Contents of Data Storage Pages

do five I/O operations. By using hashing, the number of I/O operations may be
reduced to one or two.

You can define a search key for both hashed index and sorted index retrieval
for the same column. Then, depending on the type of query you use, the
Oracle Rdb query optimizer chooses the appropriate method of retrieval. For
example, if your query contains an exact-match retrieval, the query optimizer
uses hashed index access. If your query contains a range retrieval, the query
optimizer uses the sorted index.

Figure 12–2 shows how hashing works, using the PLACEMENT VIA INDEX
option for a hashed index where the data and the hashed index are stored in
the same physical area. Oracle Rdb takes the search key value and computes
a hash value that determines on what target page the row and hash bucket
should be placed. In Figure 12–2, page 49 is the hash value Oracle Rdb
computes. Because this is the specified target page, this page is checked
for space to store the row. The space area management (SPAM) page is not
checked first in the case of a hashed index that is used as a placement index
to store table rows. If target page 49 has enough free space to store the entire
row, Oracle Rdb stores the row on page 49. If there is no available space on
target page 49, then each page in the buffer is checked for available space. If
there is no available space on any of the pages in the buffer to store the row,
then the SPAM page is checked to find a page with available space on which to
store the row.

Figure 12–2 Adding a New Row to the Database

Output is 49

ZK−7525−GE

Key value
is Smith

Hashing
algorithm

.

1 2 3 47 48 49 200

Once the row is stored, Oracle Rdb creates an entry in the hashed index.
Oracle Rdb hashes the value of the search key again, in case the hashed index
is in a different storage area, and returns page 49. Oracle Rdb then fetches
page 49 and checks that the system record has an entry for the index in which
the first row is stored. If one does not exist, Oracle Rdb creates an entry in
the system record. This entry contains the logical area identifier of the hashed

Displaying the Contents of Data Storage Pages 12–31

index (in this case, the logical area is 66) and the dbkey of the hash bucket
that contains data for the first row. Oracle Rdb then creates a hash bucket
that contains the count of the number of data entries of this type, in this case
the count of the number of Smiths; the dbkey of the actual data row on page
49; and the search key value of the row just stored.

Therefore, if target page 49 has enough free space to store the hash bucket,
Oracle Rdb stores the hash bucket on page 49. If there is no available space on
target page 49, each page in the buffer is checked for available space. If there
is no available space on any of the pages in the buffer to store the hash bucket,
then the SPAM page is checked to find a page with available space on which to
store the hash bucket.

Assume you want to store another row that contains the search key value of
SMITH. Oracle Rdb again hashes the search key value in the row to determine
the target page. If there is enough space on the target page, the row will be
stored there. The SPAM threshold value is calculated for the target page. The
SPAM page entry for the target page is not checked in order to keep the I/O
operations to a minimum. If there is not enough space on the target page, the
adjacent pages in the buffer are checked for available space until one is found
with sufficient space to store the row. In this instance, if page 49 is the target
page and has available space to store another row, then the row is stored there.
Because there already is an entry in the system record for the hash bucket that
contains the search key value SMITH, when the second Smith row is stored,
the pointer to the actual data row is changed to a pointer to a duplicate node
record. Oracle Rdb creates a duplicate node record and creates two pointers in
the duplicate node record to point to each of the two Smith records. Oracle Rdb
changes the pointer in the hash bucket entry to point to this new duplicate
node record, and increments the duplicate count in the hash bucket entry.

In Figure 12–3, note that the system record, hashed index, and data area
are each contained in separate logical areas on the page. To minimize I/O
operations, the SPAM page is not checked initially to determine where there
is available space. The SPAM page is only checked as a last resort when the
target page and the pages in the buffer are found to have no available space on
which to store the row or the hash bucket.

12–32 Displaying the Contents of Data Storage Pages

Figure 12–3 Oracle Rdb Page Structure with the System Record

Line

Page Header

System Record

Physical Page Number 49

Logical area of
hash bucket is 66

NU−2085A−RA

Data AreaLine

Data AreaLine

Duplicate
Node RecordLine

Hash BucketLine

Count of Smiths
in the database

69:49:3
69:49:1

Smith’s 2nd row

Smith’s 1st row

66:49:20

1

2

3

4

Smith66:49:42

To retrieve a row, Oracle Rdb does the following:

1. It fetches page 49 and searches the system record for the location of the
hash bucket for the correct logical area, in this case, area 66. The system
record points Oracle Rdb to the hash bucket for that record type.

2. It then fetches the corresponding hash bucket and finds the correct dbkey
among the hash elements or entries stored there along with the pointer to
the actual row.

3. It then fetches the row. If the hash element pointer is pointing to a
duplicate node, then Oracle Rdb searches the duplicate node for the correct
dbkey among the duplicate node entries stored there, finds the one pointing
to the actual row, and then fetches the row.

If another value, for example JONES, also hashes to page 49, as in the case of
synonyms or aliases, the data row is stored on that page if there is sufficient
space, or on a nearby page in the buffer if there is not. In Figure 12–4, the
data row is stored on page 50. A new hash element is then created in (or a
new entry is added to) the hash bucket on page 49.

Displaying the Contents of Data Storage Pages 12–33

Figure 12–4 Pointer to Another Page

Line

Line

Physical Page Number49 50

NU−2086A−RA

Line

Page Header

Logical area of
hash bucket is 66

Data AreaLine

Data AreaLine

Duplicate
Node RecordLine

Hash BucketLine

69:49:3
69:49:1

Smith’s 2nd row

Smith’s 1st row

66:49:20

1

2

3

4

Smith66:49:42 Jones66:50:11

System
Record

1 Jones’s row

0

Hashed indexes have the following advantages:

• If you define a hashed index and a table as stored in the same mixed
storage area, and the rows in the table are placed using the hashed index,
Oracle Rdb stores and retrieves rows in a single I/O operation if the page
size and storage area are correctly sized.

• If you assign two different tables to the same storage area by using
identical store clauses but different placement indexes in the storage map
statements, and both hashed indexes have identical store clauses, Oracle
Rdb places rows for both tables and their hashed index entries on the same
data page provided that the page size and storage area are correctly sized.
Thus, related rows can be read or written to in a single I/O operation.

• If you access rows by using a hashed index, you are less likely to have
lock problems because only the index node (hash bucket) that contains
the pointer of the row being retrieved is locked. Adjacent key values are
unlikely to be stored in the same index node.

12–34 Displaying the Contents of Data Storage Pages

12.6 Page Tail for a Data Storage Page
The page tail follows the storage segments at the end of a data page. It has a
fixed format that contains 18 bytes on a live page. A live page is a data page
and is distinguished from a snapshot (.snp) file page. Example 12–14 shows
an example of a page tail in a mixed storage area. Example 12–15 shows an
example of a page tail in a uniform storage area.

Example 12–14 Page Tail for a Data Storage Page in a Mixed Storage Area

!
0000000E 03EE snap page pointer 14

"
00000016 03F2 snap pointer TSN 22

0000 03F6 MBZ ’..’
#

00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

The page tail shown in Example 12–14 contains the following:

! Snap page pointer

This 4-byte field (0000000E) shows the page number in the .snp file of the
most recent .snp file page that contains before-image segments for this
data storage page.

" Snap pointer TSN

This 4-byte field (00000016) shows the most recent transaction that wrote
to the snapshot page in item 1.

This 4-byte field (00000000) shows the page sequence number.

The remaining fields of the page tail are reserved for Oracle Rdb internal use.

Displaying the Contents of Data Storage Pages 12–35

Example 12–15 Page Tail for a Data Storage Page in a Uniform Storage Area

!
000000DA 03EE snap page pointer 218

"
00000010 03F2 snap pointer TSN 16

#
0041 03F6 logical area 65
$

00000000 03F8 page sequence number 0
00000000 03FC MBZ ’....’

The page tail shown in Example 12–15 contains the following:

! Snap page pointer

This 4-byte field (000000DA) shows the page number in the .snp file of the
most recent snapshot page that contains before-image segments for this
data storage file page.

" Snap pointer TSN

This 4-byte field (00000010) shows the most recent transaction that wrote
to the snapshot page in item 1.

Logical area

This 2-byte field (0041) specifies the logical area for which this page is
allocated.

$ Page sequence number

This 4-byte field (00000000) shows the page sequence number. The page
sequence number is used for recovery purposes for Oracle Rdb V4.1 and
higher.

The remaining fields of the page tail are reserved for Oracle Rdb internal use.

12.7 Fragmented Storage Records
The preceding sections discussed the general format of storage records. A
record may be fragmented when stored or modified if there is not enough
space on the page to store it. Oracle Rdb fragments the storage record after
the storage record header information. This fragmentation is shown in
Example 12–16.

Because Oracle Rdb stores a minimum of 10 bytes (2 bytes overhead for the
record type plus 8 bytes for the dbkey pointer) for each row, there is always
room on the page to convert the storage record or segment into the primary
segment of a fragmented record. Oracle Rdb makes certain that the record

12–36 Displaying the Contents of Data Storage Pages

is at least the size of a primary segment in case the row is fragmented later.
The primary segment contains information (record type and dbkey pointer)
that helps Oracle Rdb reassemble a fragmented record. The other segments in
the fragmented record, called secondary segments, contain the address (dbkey
pointer) of the next segment, if any, and data.

Oracle Rdb may compress the user data portion of the row depending on the
characteristics of the row. In any case, the data portion of the segment may
look unintelligible when you use the RMU Dump command to look at the
on-disk structure. Example 12–16 shows a fragmented record.

Example 12–16 Fragmented Storage Record

!
0001 00000001 0000 page 1, area 1

00000000 0006 checksum = 00000000
0094621B 9275A680 000A time stamp = 25-MAR-1995 11:18:31.40

0000 0000 0012 0 free bytes, 0 locked
000A 0016 10 lines

.

.

.
"

0026 0040 003C line 9: offset 0040, 38 bytes
.
.
.

$ #
8002 0040 line 9: record type 2

%
00000003 0006 0042 primary fragment, next is 1:3:6

&
00CF 0048 total record length is 207 bytes

'
010017090A010A011B060002091300CA 004A data ’................’

29061E060018091B06080108 005A data ’...........)’

(continued on next page)

Displaying the Contents of Data Storage Pages 12–37

Example 12–16 (Cont.) Fragmented Storage Record
.
.
.

0001 00000003 0000 page 3, area 1
00000000 0006 checksum = 00000000

0094621B 9275A680 000A time stamp = 25-MAR-1995 11:18:31.40
0000 0000 0012 0 free bytes, 0 locked

0009 0016 9 lines
.
.
.

0046 0074 0030 line 6: offset 0074, 70 bytes
.
.
.

C002 0074 line 6: record type 2
0000000A 0002 0076 secondary fragment, next is 1:10:2

3E06001A092C0639062E060019091D06 007C data ’........9.,....>’
001C094E0659064F06001B093C064B06 008C data ’.K.<....O.Y.N...’
0A6C0679066D06001D095D0669065E06 009C data ’.^.i.]....m.y.l.’

9A0B00210C7C0600890B7D060020 00AC data ’ ..}....|.!...’
.
.
.

0001 0000000A 0000 page 10, area 1
00000000 0006 checksum = 00000000

0094621B 9275A680 000A time stamp = 25-MAR-1995 11:18:31.40
0000 0000 0012 0 free bytes, 0 locked

000B 0016 11 lines
.
.
.

0028 015A 0020 line 2: offset 015A, 40 bytes
.
.
.

C002 015A line 2: record type 2
0000000C 0007 015C secondary fragment, next is 1:12:7

0B00A90B090A00220B008B0B00980B00 0162 data ’........".......’
240C00AC0B00B90B00BB0B00230C009E 0172 data ’...#...........$’

.

.

.
0001 0000000C 0000 page 12, area 1

00000000 0006 checksum = 00000000
0094621B 9275A680 000A time stamp = 25-MAR-1995 11:18:31.40

(continued on next page)

12–38 Displaying the Contents of Data Storage Pages

Example 12–16 (Cont.) Fragmented Storage Record

0000 0000 0012 0 free bytes, 0 locked
0008 0016 8 lines

.

.

.
002C 0038 0034 line 7: offset 0038, 44 bytes

.

.

.
C002 0038 line 7: record type 2

0000000F 0007 003A secondary fragment, next is 1:15:7
00DA0B00250C00AE0B00C90B00CA0B00 0040 data ’...........*....’
0B00E90B00DE0B00260C00CE0B00D90B 0050 data ’.......&........’

270C00CF 0060 data ’...’’
.
.
.

0001 0000000F 0000 page 15, area 1
00000000 0006 checksum = 00000000

0094621B 9275A680 000A time stamp = 25-MAR-1995 11:18:31.40
0000 0000 0012 0 free bytes, 0 locked

0009 0016 9 lines
.
.
.

0034 005E 0034 line 7: offset 005E, 52 bytes
.
.
.

C002 005E line 7: record type 2
00000012 0006 0060 secondary fragment, next is 1:18:6

00FF0B00280C00ED0B00F90B00EF0B00 0066 data ’...........(....’
0B01190B010E0B00290C00FD0B01090B 0076 data ’.......)........’

0B01290B011E0B002A0C010D 0086 data ’...*.....)..’
.
.
.

0001 00000012 0000 page 18, area 1
00000000 0006 checksum = 00000000

0094621B 9275A680 000A time stamp = 25-MAR-1995 11:18:31.40
0000 0032 0012 50 free bytes, 0 locked

0009 0016 9 lines

(continued on next page)

Displaying the Contents of Data Storage Pages 12–39

Example 12–16 (Cont.) Fragmented Storage Record

.

.

.
000B 00A8 0030 line 6: offset 00A8, 11 bytes

.

.

.
(
4002 00A8 line 6: record type 2

)
00000001 0009 00AA final fragment, primary is 1:1:9

01011C 00B0 data ’...’

The storage segment in Example 12–16 is read from right to left. It contains
the following information:

! Page header

" Offset from beginning of page to storage segment

The offset, combined with the length entries, identifies the location of a
storage segment on the page. The location of a specific storage segment on
a page is the sum of the page address and the offset. This location can be
represented as:

storage-segment-address = page-address + offset

Storage record ID

Each storage segment is identified by its storage record number. Oracle
Rdb uses this internal number to look up the storage segment.

$ Frag flags

The frag flags indicate whether a segment is whole (the value of the flag is
00) or fragmented. If the record has been fragmented, the first bit indicates
the presence of a following segment and the second bit, the presence of
a preceding fragment. The first segment is called the primary storage
segment and the others are called secondary storage segments. In the case
of the primary storage segment, the frag flags would indicate 10 (following
segment, no preceding segment). A secondary storage segment with a
following segment would be 11. The final secondary storage segment would
be 01.

% Fragment chain pointer

12–40 Displaying the Contents of Data Storage Pages

The fragment chain pointer consists of the line number and page number
where the next segment is located. In the case of all but the last segment
in a fragmented row, the line and page number point to the next segment.
If the fragment chain pointer is the last in the chain, it points back to the
primary segment.

& Total length of storage record

Oracle Rdb uses the length of the storage record to allocate space in virtual
memory when it reconstructs a storage record from storage segments
in response to a transaction’s call for data. Oracle Rdb reassembles the
fragments in virtual memory before making the row available to the
transaction. It then constructs the row by following the fragment chain
pointers to the next segment until it runs out of segments.

The total length of storage record field exists only for the primary segment.

' Uninterpreted data

(Final fragment

Typically, there are several fragmented rows per page. The last page
contains the final fragment. In Example 12–16, the final fragment flag is
set to 01. In this case, the first bit is a 0 (not displayed) to indicate that
this the final fragment of the fragment chain. The second bit is set to 1 to
indicate that there was a preceding segment.

) Uncompressed line number and page number pointing back to the primary
segment

Displaying the Contents of Data Storage Pages 12–41

13
Displaying the Contents of SPAM Pages

Oracle Rdb manages free space in a database with space area management
(SPAM) pages. A SPAM page maintains an inventory of the free space that is
available on each data page within an associated physical range of data pages
known as the SPAM interval.

By default, there are the following two types of SPAM pages based on the
(uniform page or mixed page) format of the storage area:

• SPAM pages for storage areas with uniform page format with preset SPAM
intervals and data page fullness thresholds

These include single-file databases and multifile databases with storage
areas with uniform page format.

• SPAM pages for storage areas with mixed page format with definable
SPAM intervals and data page fullness thresholds

These include multifile databases with storage areas with mixed page
format.

The following sections describe the types of SPAM pages in more detail.

13.1 Space Management in Single-File and Multifile Databases
By default, space management is the same for both single-file databases
and multifile database storage areas using uniform page format because the
storage areas are the same for both. For uniform page format storage areas,
Oracle Rdb always knows the size of records that can be stored on a given page
because the records are always one size. Consequently, Oracle Rdb maintains
simplified SPAM entries for data pages; each SPAM entry indicates whether
the data page can or cannot hold one more of the particular record type, that
is, there is a full or not full indicator.

Space management in multifile databases for storage areas with mixed page
format, however, is different. This type of storage area may contain records of
different sizes from more than one table as well as different types of records,
such as system records associated with hashed indexes for the tables stored

Displaying the Contents of SPAM Pages 13–1

on the data page. For the mixed page format storage area, space management
needs to be much more dynamic, yet offer as much or more efficiency in
allocating space between SPAM pages and utilizing space for data on data
pages.

To optimize storage efficiency when Oracle Rdb does not know the size of the
next record to be stored on the data page, a more efficient mechanism called
the fullness threshold value is used to keep track of the percentage of free
space left on the data page. This is implemented in one of the following ways:

• By using the THRESHOLDS ARE option that is defined as a storage area
option in the SQL CREATE DATABASE statement or the SQL IMPORT
statement

• By using the Thresholds qualifier with the RMU Restore, RMU Restore
Only_Root, RMU Move_Area, and RMU Copy_Database commands

Note

You must perform a full backup operation immediately after you
perform an RMU Move_Area or RMU Copy_Database operation. If
parameters are changed during the move or copy operation, the restore
and recover operations might not be able to re-create the database
correctly.

13.2 Space Management for Logical Areas
Space management for logical areas in storage areas with a uniform page
format in both a single-file and multifile database is the same as in a multifile
database for storage areas with a mixed page format.

SPAM entries can be one of four possible user-selected values. The default
threshold values are (0,0,0), which indicate that the nominal record size should
be used for SPAM threshold calculations.

If you use data compression, you should use logical area thresholds. Because
uniform page format storage areas in both single-file and multifile databases
can contain logical areas with compressed records, this change permits more
record storage efficiency with compressed records by allowing you to adjust
the space management separately for each logical area in a storage area with
uniform page format.

13–2 Displaying the Contents of SPAM Pages

Mixed page format storage areas in multifile databases can contain records of
different sizes from more than one table as well as different types of records,
such as system records associated with hashed indexes for the tables stored
on the data page. For the mixed page format storage area, space management
must be dynamic and efficient in allocating space between SPAM pages and
utilizing space for data on data pages.

Consider the following methods for optimizing storage efficiency:

• When the size of the next record to be stored on the data page can vary,
use the fullness threshold value to keep track of the percentage of free
space on the data page.

This threshold value is implemented with the THRESHOLDS ARE option
that is defined only as a storage map option in the SQL CREATE or ALTER
STORAGE MAP statement and the SQL IMPORT statement. You cannot
set these threshold values in an SQL CREATE DATABASE statement,
or SQL IMPORT statement, or by using the Thresholds qualifier for any
RMU command except the RMU Repair command. See the Oracle RMU
Reference Manual for more information on using the RMU Repair command
to set these threshold values.

• Set the interval between SPAM pages.

This is implemented with the INTERVAL IS option that is also defined as
a storage area option in the SQL CREATE DATABASE and SQL IMPORT
statement. The combination of specifying SPAM threshold values and the
SPAM interval for multifile databases with storage areas with mixed page
format offers the database administrator (DBA) the needed flexibility and
efficiency for allocating space between SPAM pages and utilizing space
for data on data pages, both of which have an impact on performance, as
described later in this section.

For example, consider SPAM intervals alone. For a 1-block page size, storage
areas can have SPAM intervals that range from the default and minimum
value of 216 pages to a maximum value of 1964 pages. Compare this to the
preset value of 531 pages for single-file databases or multifile databases for
storage areas with uniform page format with a default 1-block page size.
Definable SPAM intervals help you to estimate the actual space needed for
storage areas and reduce SPAM contention.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information on optimizing SPAM intervals.

Displaying the Contents of SPAM Pages 13–3

Combined with other Oracle Rdb features definable SPAM intervals help you
tune a database for improved performance by properly defining the page size,
the size of the storage area, the page format, the SPAM interval, and the
fullness threshold values. These physical design considerations are based
on the results of the conceptual and logical database design, the transaction
analysis, and the final loaded data model described in the Oracle Rdb7 Guide
to Database Design and Definition. The Thresholds Are and Interval Is options
are described in more detail later in this section.

Section 13.3 and Section 13.4 describe the SPAM pages for both types of
storage areas.

13.3 SPAM Pages in Storage Areas with Uniform Page Format
In a single-file database, a SPAM page is the same size as the data storage
page it manages. The space between SPAM pages is determined by database
page size and clump size. SPAM intervals are as follows:

• Page size 1 block: SPAM interval is 531 database pages

• Page size 2 blocks: SPAM interval is 1089 database pages

• Page size 3 blocks: SPAM interval is 1647 database pages

• Page size 4 blocks: SPAM interval is 2208 database pages

For example, if the page size is 2 blocks, each SPAM page provides information
for the next 1089 data pages.

To determine the actual number of pages in the SPAM interval, compare the
number of pages addressable by a SPAM page against the maximum number
of pages for a uniform page format area. Oracle Rdb uses the smaller of the
two values for the number of pages in the SPAM interval.

• To calculate the number of pages that are addressable by a SPAM page:

SPAM interval (database pages) = (((S � 24) � 8� 7)=(P � 2 + 16)) � P

In the equation:

S—Specifies the page size in bytes.
P—Specifies the number of pages in a clump.

For example, if the clump size is 12 pages and the page size is 2 blocks or
1024 bytes, then the SPAM interval in pages is as follows:

SPAM interval (pages) = 7993=40 � 12 = 2388 pages

13–4 Displaying the Contents of SPAM Pages

• The following equation calculates the maximum number of pages for a
uniform page format area:

SPAM interval (database pages) = ((S � 24)=(2 + :25P)) � P

For example:

SPAM interval (pages) = 7993=5 � 12 = 19183 pages

Because 2388 is less than 19183, the storage area SPAM interval used is 2388.

Note

To allow for the halfword alignment in the SPAM page for the clump
count, you should subtract the value of the clump size (in pages) from
the calculated SPAM interval value. This method typically undercounts
the actual SPAM interval by as much as the number of pages in a
clump and means that sometimes one less clump can be represented on
a SPAM page. For example:

Calculated theoretical clump size Estimated SPAM
SPAM interval (pages) - (pages) = Interval (pages)

2388 pages� 12 pages=clump = 2376 pages

This calculation is a closer approximation of the estimated SPAM
interval and will ensure that you do not undercount the number of
SPAM pages in a storage area, especially if the storage area is quite
large.

SPAM pages hold a fullness threshold value for each page in a database page
interval. By default, each threshold value is a 2-bit entry with a value of 0 or
3; that is, 0 (00) if a page is not full and 3 (11) if a page is full as shown in
Example 13–1.

See Table 13–1 for a description and meaning of each of these threshold values.

Displaying the Contents of SPAM Pages 13–5

Example 13–1 SPAM Page for a Storage Area with Uniform Page Format

$ RMU/DUMP/AREA=RDB$SYSTEM /SPAMS_ONLY MF_PERSONNEL
.
.
.

!
0001 00000001 0000 page 1, physical area 1 (space mgmt)

BD045E16 0006 checksum = BD045E16
80000000 00000001 000A Fast incremental backup TSN = 1

0000 0001 0012 1 free byte, 0 locked

"
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0016 pages 2-65: threshold 3
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0026 pages 66-129: threshold 3
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0036 pages 130-193: threshold 3
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0046 pages 194-257: threshold 3
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0056 pages 258-321: threshold 3
3C30030C0000FFFFFFFFFFFFFFFFFFFF 0066 pages 322-361: threshold 3

pages 362-370: threshold 0
page 371: threshold 3

.

.

.
00000000000000000000000000003FFF 00E6 pages 834-840: threshold 3

pages 841-897: threshold 0
00000000000000000000000000000000 00F6 pages 898-961: threshold 0
00000000000000000000000000000000 0106 pages 962-1025: threshold 0
00000000000000000000000000000000 0116 pages 1026-1089: threshold 0

00 0126 page 1090: threshold 0

(continued on next page)

13–6 Displaying the Contents of SPAM Pages

Example 13–1 (Cont.) SPAM Page for a Storage Area with Uniform Page Format

#
016B 0127 363 clumps

$
4001 0129 pages 2-4, logical area 16385
%
0001 012B pages 5-7, logical area 1
0002 012D pages 8-10, logical area 2
0003 012F pages 11-13, logical area 3
0004 0131 pages 14-16, logical area 4
0005 0133 pages 17-19, logical area 5
0006 0135 pages 20-22, logical area 6

.

.

.
&
0000 03FD pages 1088-1090, logical area 0

'
00 03FF MBZ free ’.’

Each SPAM page contains the following information, as shown in
Example 13–1:

! A standard 22-byte page header (offset 0000–0015).

Unlike a data page, the number of bytes free space is constant and number
of bytes of locked free space is zero. Also, all SPAM pages have the most
significant bit of the TAD field set to one to indicate this field contains a
valid TSN. During an incremental backup operation, the SPAM interval
of pages is backed up only if the SPAM TSN is higher than the root file
backup TSN providing fast incremental backup performance.

" A number n of 2-bit SPAM entries, where n is the SPAM interval and is
limited by the capacity of a page.

You designate page size when you create a database with the SQL
CREATE DATABASE statement. Oracle Rdb calculates the SPAM interval
automatically.

The count of clumps (016B) mapped on the SPAM page.

Oracle Rdb allocates a group of three database pages into clumps in the
same logical area.

$ A map (offset 0129–03FF) that indicates to which logical area a page
belongs (Logical Area to Page Map).

Displaying the Contents of SPAM Pages 13–7

This map lists:

% A logical area entry for a clump of database pages that indicates the
logical area to which the clump belongs

& A quantity of unused free space shown as logical area 0

' SPAM pages have no 10-byte page tail.

SPAM pages are never written to the snapshot (.snp) file when modified.

The order of the 2-bit SPAM entries corresponds to the order of the data pages
for which the SPAM page is responsible. For example, the first SPAM entry
gives the fullness threshold value for the data page that immediately follows
the SPAM page.

Example 13–1 shows the page header, the SPAM threshold values, and the
unused portion of the SPAM page. SPAM pages do not count against the
storage area’s space allocation. They do, however, affect the page numbers of
the data storage pages. In Example 13–1, the first data storage page is page 2
and the last data storage page is page 1090. (The page allocation for this area
is 1089.)

13.3.1 Area Bit Maps
Storage areas in single-file databases and multifile databases with uniform
page format contain a data structure called an area bit map (ABM) that is not
contained in storage areas with mixed page format in multifile databases. An
ABM page contains bit vectors that tell Oracle Rdb which SPAM pages map
to which database page clumps for a particular logical area. ABM pages speed
up sequential scans of the rows in a table by directing Oracle Rdb to the SPAM
page whose bit is set in the logical area’s ABM bit vector. That SPAM page is
searched to find which clump is allocated to the desired logical area.

Because SPAM pages indicate the fullness threshold of a database page, you
can use ABM pages to locate SPAM pages that manage database pages that
are not full and can store more rows. ABM pages are also used to speed the
gathering of information for each table.

ABM pages are particularly useful for larger databases with more than one
SPAM page. In this case, ABM pages prevent Oracle Rdb from reading every
SPAM page to find entries for a given logical area.

Example 13–2 displays an ABM page.

13–8 Displaying the Contents of SPAM Pages

Example 13–2 ABM Page

$ RMU/DUMP/LAREA=74 MF_PERSONNEL
.
.
.

!
0001 000002D2 0000 page 722, physical area 1

7B5D6255 0006 checksum = 7B5D6255
009714FB 5EEAC4E0 000A time stamp = 20-AUG-1995 15:58:54.51

0000 0004 0012 4 free bytes, 0 locked
"
000002D3 0016 next area bit map page 723
#
00000000 001A max set bit index 0
00000000 001E MBZ ’....’
$
00001E60 0022 bitvector count 7776

%
00000000000000000000000000000001 0026 bitvector ’................’
00000000000000000000000000000000 0036 bitvector ’................’

:::: (58 duplicate lines)
000000000000000000000000 03E6 bitvector ’............’

00000000 03F2 MBZ ’....’
&

804A 03F6 bitmap page for logical area 74
0000000000000000 03F8 MBZ ’........’

.

.

.

The ABM shown in Example 13–2 page contains the following:

! A standard database page header (offset 0000–0015).

" The page number (000002D3) of the next ABM page for logical area 74.

An index (00000000) to the maximum bit set in the bit vector.

This index shows how many SPAM pages the database is using. This is
only used in the first ABM of the chain.

$ A count (00001E60) of the number of bits in the bit vector.

% Set bits (00000000000000000000000000000001) that indicate the
corresponding SPAM pages have entries for a logical area.

& The page tail (offset 03F6–03F7) that contains the logical area for which
the ABM page is used.

Displaying the Contents of SPAM Pages 13–9

13.3.2 Area Inventory Pages
Oracle Rdb uses area inventory pages (AIPs) to maintain a queue of pointers to
logical area bit maps (ABMs). Example 13–3 shows the contents of an AIP.

Example 13–3 An Area Inventory Page

$ RMU/DUMP/AREA=RDB$SYSTEM/START=2/END=2 MF_PERSONNEL
.
.
.

!
0001 00000002 0000 page 2, physical area 1

EBB7795E 0006 checksum = EBB7795E
009714FB 05FCA7E0 000A time stamp = 20-AUG-1995 15:56:25.31

0000 0022 0012 34 free bytes, 0 locked
"
00000003 0016 next area inventory page 3

0000000000000000 001A MBZ ’........’
#
0010 0022 16 logical area entries

entry #0
$
00000005 0024 first area bitmap page 5
%
0001 0001 0028 logical area 1, physical area 1

&
& 15 002C area name length 21 bytes
54535F4445544E454D47455324424452 002D area name ’RDB$SEGMENTED_ST’

0000000000000000000053474E4952 003D area name ’RINGS..........’
'
00000001 004C snaps enabled TSN 1

(
00A2 0050 record length 162 bytes

00000000 0052 MBZ ’....’
)
01 0056 entry is in use

0000000000000000 0057 MBZ ’........’
+>
000000 0059 thresholds are (0,0,0)
000000 005C MBZ ’...’

(continued on next page)

13–10 Displaying the Contents of SPAM Pages

Example 13–3 (Cont.) An Area Inventory Page

entry #1
00000008 005F first area bitmap page 8

0001 0002 0063 logical area 2, physical area 1
0D 0067 area name length 13 bytes

000000534E4F4954414C455224424452 0068 area name ’RDB$RELATIONS...’
000000000000000000000000000000 0078 area name ’...............’

00000001 0087 snaps enabled TSN 1
00A8 008B record length 168 bytes

00000000 008D MBZ ’....’
01 0091 entry is in use

0000000000000000 0092 MBZ ’........’
+>
000000 0094 thresholds are (0,0,0)
000000 0097 MBZ ’...’

.

.

.

The AIP shown in Example 13–3 contains the following:

! Page header (offset 0000–0015).

" A pointer (00000003) to the next AIP.

If another AIP does not exist, the value shown is –1.

The count (0010) of logical area entries on the AIP.

The following items shown in Example 13–3 are logical area entries:

$ A pointer (00000005) to the first ABM page for a logical area.

% A physical area identifier (0001) and logical area identifier (0001).

& The logical area name (54535F4445544E454D47455324424452) and length
(15) of the name.

' The last transaction sequence number (TSN) (00000001) to enable snapshot
(.snp) files for a particular logical area or the most recent transaction that
did exclusive updates.

(The buffer length (009A), which corresponds to the record size of the area.

) A flag (01) that indicates if the entry for the logical area is being used.

If the flag is null, the transaction ID (TID) of the user who deleted the
table or index is shown.

+> The SPAM threshold values (000000) for the logical area in the
RDB$SYSTEM storage area with uniform format pages.

Displaying the Contents of SPAM Pages 13–11

The default setting (0,0,0), indicates that user-selected threshold values are
not used.

13.4 SPAM Pages in Storage Areas with Mixed Page Format
In a multifile database with mixed page format, a SPAM page entry for a
particular data page is updated by default whenever the total amount of data
stored on that data page exceeds a fullness percentage threshold value.

Example 13–4 shows an example of a SPAM page display for storage areas
with mixed page format.

Example 13–4 SPAM Page for a Storage Area with Mixed Page Format

$ RMU/DUMP/AREA=EMPIDS_LOW MF_PERSONNEL
!

0002 00000001 0000 page 1, physical area 2 (space mgmt)
12E68E03 0006 checksum = 12E68E03

80000000 00000010 000A Fast incremental backup TSN = 16
0000 03AA 0012 938 free bytes, 0 locked

"
0000000000000000010003200D000C02 0016 page 2: threshold 2

pages 3-6: threshold 0
page 7: threshold 3
pages 8-13: threshold 0
page 14: threshold 1
page 15: threshold 3
pages 16-19: threshold 0
page 20: threshold 2
page 21: threshold 0
page 22: threshold 3
pages 23-29: threshold 0
page 30: threshold 1
pages 31-65: threshold 0

00000000000000000000000000000000 0026 pages 66-129: threshold 0
00000000000000000000000000000000 0036 pages 130-193: threshold 0

000000000000 0046 pages 194-217: threshold 0

00000000000000000000000000000000 004C MBZ free ’................’
:::: (58 duplicate lines)

#
00000000000000000000 03FC MBZ free ’..........’

Each SPAM page contains the following information shown in Example 13–4:

! A standard 22-byte page header (offset 0000–0015).

13–12 Displaying the Contents of SPAM Pages

Unlike a data page, the number of bytes free space is constant and number
of bytes-locked free space is zero. Also, all SPAM pages have the most
significant bit of the TAD field set to one to indicate this field contains a
valid TSN. During an incremental backup operation, the SPAM interval
of pages is backed up only if the SPAM TSN is higher than the root file
backup TSN providing fast incremental backup performance.

" A number n of 2-bit SPAM entries, where n is the SPAM interval and is
limited by the capacity of a page.

You can designate the SPAM interval and page size when you create a
database with the SQL CREATE DATABASE statement. Oracle Rdb
calculates the SPAM interval automatically.

SPAM pages have no 10-byte page tail.

SPAM pages are never written to the .snp file when modified.

The order of the 2-bit SPAM entries corresponds to the order of the data pages
for which the SPAM page is responsible. For example, the first SPAM entry
gives the fullness threshold value for the data page that immediately follows
the SPAM page.

Example 13–4 shows the page header, the SPAM threshold values, and the
unused portion of the SPAM page. SPAM pages do not count against the area’s
space allocation. They do, however, affect the page numbers of the data storage
pages. In Example 13–4, the first data storage page is page 2 and the last data
storage page is page 217. (The page allocation for this area is 216.) A default
SPAM interval of 216 pages allows for the creation of a 1-block page size and a
1-block buffer size.

Before data is stored in a mixed page format storage area (.rda) file, Oracle
Rdb calculates the threshold of a data page that is guaranteed to hold the
record. If a table has a storage map that specifies a PLACEMENT VIA INDEX
clause, the specified index is used to determine the target page and Oracle Rdb
fetches the target page. Otherwise, Oracle Rdb determines a potential target
page for the row. Next, Oracle Rdb checks the threshold of the target page to
see if it has sufficient space to fit the record on the page. Oracle Rdb calculates
the SPAM threshold of the data page by inspecting its free space and locked
space counts in the page header. The SPAM page is not checked for free space
in order to save an I/O operation and because the data page is already in the
buffer. Finally, the record is only stored on the page if the calculated threshold
value indicates that there is sufficient space on the page to store the record.

Displaying the Contents of SPAM Pages 13–13

Oracle Rdb does not store a record on a page with a threshold value of 3. In
this way, the value you set for the highest threshold can be used to reserve
space on the page for future record growth. Free space is guaranteed on the
page based on the specified SPAM threshold values. Therefore, the first and
second threshold values can be set to store records selectively without having
to worry whether or not a PLACEMENT VIA INDEX clause in a storage map
takes record storage precedence.

If the potential target data page does not contain enough free space for the
entire row, Oracle Rdb continues to search for a data page with sufficient space
by scanning only the SPAM pages in the storage area. This scanning provides
good performance for locating free space even when the database is nearly
full. Without SPAM pages, Oracle Rdb would have to search each data page
sequentially until it found a block of free space.

If the potential target data page does not contain enough free space for the
entire row, and if a table has a storage map that specifies PLACEMENT VIA
INDEX, then the pages in the buffer are first searched for free space. If a page
in the buffer has sufficient space to store the record, the record is stored. If no
space is found among the pages in the buffer, then Oracle Rdb begins to scan
the SPAM pages in the storage area for sufficient space to store the record.
Searching the pages in the buffer first, before scanning the SPAM pages,
improves performance by reducing I/O operations.

You can control how many data pages each SPAM page manages (the interval
of SPAM pages in each storage area file) and you can set three threshold
values associated with the SPAM page free space inventory list. By default,
these options are available only with multifile database storage areas that use
mixed page format. You can specify SPAM threshold values for logical areas in
storage areas with uniform format pages in a storage map statement.

In a given .rda file, SPAM pages are located at regular intervals. You control
the range of data pages maintained by each SPAM page with the INTERVAL
IS option in the SQL CREATE DATABASE statement or in the SQL IMPORT
statements. The INTERVAL IS option specifies the number of data pages
between SPAM pages in the storage file, and thus the maximum number of
data pages each SPAM page will manage.

By default, each SPAM page maintains an inventory of current free space for
the next 216 data pages. A SPAM page is the first physical page in a storage
area. Following the first SPAM page and its 216 data pages is a second SPAM
page. Again by default, the second SPAM page maintains an inventory of free
space for the next range of 216 data pages, and so on. SPAM pages do not
contain data, and data pages do not contain SPAM information. Figure 13–1

13–14 Displaying the Contents of SPAM Pages

illustrates the physical file layout for a storage area defined with default values
(including ALLOCATION IS 400 PAGES).

Figure 13–1 SPAM Intervals in a Mixed Storage Area Using Defaults

1 2 3 217 218 219 220 399 400

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

S
P
A
M

S
P
A
M

.

.

Physical
Page
Number

EMPLOYEES.RDA

ZK−7526−GE

In Figure 13–1, the first SPAM page (physical page number 1) maintains an
inventory of free space that resides on physical data pages 2 through 217. The
second SPAM page on page 218 keeps the free space inventory list for pages
219 through 400. Because this EMPLOYEE.RDA file was defined using the
default allocation of 400 pages and a SPAM interval of 216 pages, only two
SPAM pages were created.

In Figure 13–2, the storage area file allocation is defined as 4000 pages
(ALLOCATION IS 4000 PAGES) and the interval of data pages between SPAM
pages set to 1000 (INTERVAL IS 1000).

Displaying the Contents of SPAM Pages 13–15

Figure 13–2 SPAM Page Distribution with a Larger Interval

EMPLOYEES.RDA

1001 1002 1003 2002 2003 2004 3003 3004 3005 40001 2

S
P
A
M

S
P
A
M

S
P
A
M

S
P
A
M

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

d
a
t
a

.

.

Physical
Page
Number

ZK−7527−GE

Four SPAM pages were created in Figure 13–2. Each maintains a free space
inventory list as follows:

• The first SPAM page contains the free space inventory list for physical
pages 2 through 1001 (1000 pages).

• The second SPAM page contains the free space inventory list for physical
pages 1003 through 2002 (1000 pages).

• The third SPAM page contains the free space inventory list for physical
pages 2004 through 3003 (1000 pages).

• The fourth SPAM page contains the free space inventory list for physical
pages 3005 through 4000 (996 pages). The final range of data pages is
limited by the remaining number of pages in the storage area.

The default interval value, 216 pages, is also the minimum value you can
specify. The maximum number of entries that fit on a SPAM page (maximum
value) depends on the size of the SPAM page. A SPAM page is the same size
as a data page. The larger the data page, the larger the SPAM page, and
the more entries that fit. The SPAM interval can be no larger than the value
calculated from the following formula:

((Block size � 2048)� 88)

Each entry in a SPAM page is 2 bits long (4 entries to the byte), and a SPAM
page contains other internal information that occupies 22 bytes. Use the
following formula to determine the maximum interval value (the maximum
number of data pages for which each SPAM page can hold entries):

((Blocks per page � 512)� 22) � 4

13–16 Displaying the Contents of SPAM Pages

The value 512 in the formula represents the number of bytes per block. The
value 22 represents the number of bytes in an internal structure called a page
header. The value 4 represents the number of SPAM entries per byte.

If your database has 1 block per page, the following formula shows that the
maximum number of pages you can specify for the INTERVAL IS option is
1964:

((1 � 512)� 22) � 4 = 1964

13.5 SPAM Pages in Storage Areas with Mixed Page Format
Without a Placement Index

You can control when Oracle Rdb updates a SPAM page’s inventory information
with the THRESHOLDS ARE option in the SQL CREATE DATABASE
statement and in the SQL IMPORT statements. Oracle Rdb keeps track of
how much free space is left on a data page by using fullness threshold values.
A fullness threshold is a percent value that corresponds to the amount of
used data page space.

A SPAM page entry for a particular page is updated when the amount of data
on that page exceeds a fullness threshold value. You can specify one, two,
or three values. If you omit the THRESHOLDS ARE option from the SQL
CREATE DATABASE statement, the defaults are 70, 85, and 95 percent. If
you specify only one or two values, unspecified values default to 100 percent.

How these SPAM threshold values relate to the storage algorithm is explained
in the following sample for the case when no placement index is used to store
table rows. For more information on how a hashed index placement index
works relative to placing rows on a page, see Section 12.5.3.2.

This particular sample is different from the real sample mf_personnel database
described throughout this book. This special sample scenario is used to
show how SPAM thresholds work when rows are stored without the aid of a
placement index. Assume a user creates a multifile version of the personnel
database called mf_personnel. For each table, the user creates a separate .rda
file. Default fullness threshold values (70, 85, and 95 percent) are used for
all the storage area files except one, the EMPLOYEES.RDA file. For this file,
fullness threshold values of 70, 80, and 90 percent are specified. Example 13–5
shows the SQL command procedures for a simple database definition.

Displaying the Contents of SPAM Pages 13–17

Example 13–5 Storage Area SPAM Threshold Parameters for Specific
Storage Areas

CREATE DATABASE FILENAME "DB_DISK:MF_PERSONNEL" PATHNAME
"CDD$COMPATIBILITY:CORP.ACCT"

! Define database-wide attributes:

DICTIONARY IS REQUIRED
SNAPSHOT IS ENABLED DEFERRED
NUMBER OF RECOVERY BUFFERS IS 100

! Define global storage area attributes:

ALLOCATION IS 500 PAGES
PAGE SIZE IS 3 BLOCKS
THRESHOLDS ARE (70, 85, 95) ! Oracle Rdb default
INTERVAL IS 256
PAGE FORMAT IS MIXED

! Override global attributes with local attributes for EMPLOYEES rows:

CREATE STORAGE AREA EMP_STOR_AREA
FILENAME "USD12:[DBS.DATA]EMPLOYEES.RDA"
THRESHOLDS ARE (70, 80, 90)
INTERVAL IS 256
PAGE SIZE IS 2 BLOCKS
SNAPSHOT FILENAME "USD13:[DBS.SNAPS]EMPLOYEES.SNP"

! Define separate storage files for remaining tables.
! Use global defaults. For clauses not specified globally,
! Oracle Rdb defaults take effect.

CREATE STORAGE AREA JH_STOR_AREA
FILENAME "USD14:[DBS.DATA]JOB_HISTORY.RDA"
SNAPSHOT FILENAME "USD15:[DBS.SNAPS]JOB_HISTORY.SNP"

CREATE STORAGE AREA SH_STOR_AREA
FILENAME "USD16:[DBS.DATA]SALARY_HISTORY.RDA"
SNAPSHOT FILENAME "USD17:[DBS.SNAPS]SALARY_HISTORY.SNP"

.

.

.
! End the CREATE DATABASE statement with a semicolon.

.

.

.
! Define storage maps here.

;

13–18 Displaying the Contents of SPAM Pages

The SPAM entry for a data page in the EMPLOYEES.RDA file is updated
every time the amount of data on that page rises above or falls below any
one of the specified percent values. In fact, the values you accept as defaults
or specify explicitly with the THRESHOLDS ARE option establish ranges of
guaranteed free space on each data page, as shown in Example 13–5.

During the process of storing a row in the EMPLOYEES table, Oracle Rdb
calculates the SPAM threshold for the row’s target page and determines if the
target data page can guarantee enough free space given the following:

• The size of the row being stored

• The guaranteed free space range in which the page is currently set

The SPAM threshold values of 70, 80, and 90 percent in Example 13–5
establish four possible ranges of guaranteed free space on the data pages. At
any given moment during database activity, each data page is identified as
falling into only one range.

To show which range a data page is in, Oracle Rdb internally uses a 2-bit
value. The binary values and their meanings are summarized in Table 13–1.

Table 13–1 SPAM Entry for a Data Page

Binary
Value Meaning

00 Page fullness currently falls into the first range. There is 0% to less than
70% full and a guarantee that 30% of the total free space is available.

01 Page fullness currently falls into the second range. There is 70% to less
than 80% full and a guarantee that 20% of total free space is available.

10 Page fullness currently falls into the third range. There is 80% to less
than 90% full and a guarantee that 10% of total free space is available.

11 Page fullness currently falls into the fourth range. There is 90% to 100%
full and no guarantee of any free space is available.

If the size of the row being stored is 25 percent of a data page in the
EMPLOYEES.RDA file, Oracle Rdb looks only at data pages with a SPAM
entry of 00 in the inventory list. The target page is the first candidate that
Oracle Rdb checks. If the SPAM entry for the target page is not set to 00,
Oracle Rdb checks subsequent SPAM entries on this SPAM page (and therefore
in this range of data pages managed by this SPAM page) for a 00 entry. When
a data page with sufficient space is located in the SPAM inventory list, or in
SPAM index, the row is stored on that page.

Displaying the Contents of SPAM Pages 13–19

Note

To display the current binary values on a SPAM page, use the
RMU Dump command. If the EMPLOYEES.RDA file has an interval
of 1000 data pages and you determined that physical page 1002 is
a SPAM page, (similar to the example in Figure 13–2), enter the
following command:

$ RMU/DUMP/AREA=EMPLOYEES/START=1002/END=1002 MF_PERSONNEL.RDB

Consider the SPAM entry for data page 47 in the EMPLOYEES.RDA file.
Before any data is loaded, 100 percent of free space on the page is available.
A data page defined with the default of 2 blocks per page (1024 bytes) has
approximately 976 free bytes after accounting for the overhead of internal
structures. In this example, assume there is a SPAM page on physical page 1
that controls the free space on pages 2 through 257. At this point, the SPAM
entry for page 47 contains the binary value of 00.

A program stores many rows, and page 47 is the target page for several of
them. As each row is stored, the SPAM page is checked to ensure that enough
space exists on page 47 to store the row without fragmenting it. After storing
this set of rows, only 35 percent of the free space on this page remains (that
is, the page is 65 percent full). The SPAM entry for page 47 still contains the
binary value of 00 because the page is within the 0 percent to 70 percent full
range.

A subsequent program also stores many EMPLOYEES rows, and several
of these rows hash to page 47 (as the target page). (See Section 12.5.3 for
information about hashing.) Assume that the size of the first row stored by
this program is 14 percent of the entire free space possible on a page in this
storage area. The storage algorithm tries to place the row on the target page
if the SPAM entry for the target page can guarantee at least 14 percent free
space. Because this is the case, the first row is stored. The new row increases
the fullness threshold percent of the free space region to 79 percent, leaving 21
percent of free space on page 47. Oracle Rdb updates the SPAM entry for page
47 as the fullness threshold is now in the second (70 percent to 80 percent)
range. The binary value for the page 47 entry is changed to 01.

The second row is also 14 percent of the entire free space possible on a page in
the EMPLOYEES.RDA file, and it too hashes to page 47. Oracle Rdb proceeds
with the following steps:

1. Calculates the SPAM threshold value for target page 47 to be 01.

13–20 Displaying the Contents of SPAM Pages

2. Determines that the SPAM threshold value 01 indicates that the fullness
percentage of this page falls into the second range (70 percent to 80 percent
full, or a guarantee of 20 percent free space).

3. Sees that the 20 percent guaranteed free space is sufficient to store the
row, whose size is just 14 percent of the entire free space.

4. Stores the row on page 47.

5. Updates the SPAM entry for page 47, as the fullness threshold of the page
increases from 79 percent to 93 percent (from the second to the fourth
range). The binary value for the SPAM entry on page 47 is set to 11.

Assume the third row occupies only 5 percent of the entire free space possible
on a page in this storage area, and it hashes to page 47. Oracle Rdb will
perform the following steps:

1. Calculates the SPAM threshold value for target page 47 to be 11.

2. Determines that the value 11 indicates that the fullness percentage value
of this page falls into the fourth range (90 percent to 100 percent full, or no
guarantee of any free space).

3. Immediately rules out page 47 as a possibility even though the page might
have enough space to store the entire row. (The reason for this points out
the purpose of the third threshold value. When the third value is set to
90, as in this example, Oracle Rdb maintains 10 percent free space on
each page for padding, in case an updated row already stored on the page
increases in size.)

4. Searches subsequent entries on this SPAM page for a data page that can
guarantee at least 5 percent free space.

Assume the adjacent SPAM entry for page 48 contained a binary value of 10.
This value indicates to Oracle Rdb that there is at least 10 percent free space,
which is sufficient to store the entire third row. In fact, the first entry to have
a binary value of 00, 01, or 10 would suffice.

Displaying the Contents of SPAM Pages 13–21

A
Handling Bugcheck Dumps

This appendix describes bugcheck dumps and tells you how to report problems
to Oracle. In addition, Section A.3 describes how to track down problems.
Several examples describe the most commonly occurring problems.

A.1 Submitting Problem Reports
You might encounter an unexpected and unresolvable software error while
using Oracle Rdb. This type of error usually produces a bugcheck dump. If you
receive a bugcheck dump, you can report the problem as follows:

• Contact your Oracle supercenter or Oracle representative.

• Have your customer system identifier (CSI) available when you report the
problem.

• Collect and include supporting documentation and source material to help
Oracle diagnose the problem.

A.2 Troubleshooting Oracle Rdb
Oracle Rdb generates a bugcheck dump file whenever an exception error
occurs during database processing. A text file is generated that describes the
environment, including the following:

• Process and system parameters

• Copies of the call frame and stack

• Copies of other Oracle Rdb internal data structure information

If the bugcheck dump file indicates that a bug in the Oracle Rdb code exists,
contact your Oracle supercenter or representative. If possible, provide a copy
of the bugcheck dump and other information to reproduce the problem.

Handling Bugcheck Dumps A–1

A.2.1 Types of Bugcheck Dumps
There are eight types of Oracle Rdb bugcheck dumps as follows:

• SQL interface bugchecks, written to SYS$LOGIN:SQLBUGCHK.DMP

This bugcheck dump file contains information specific to SQL internal
errors.

• Oracle RMU bugchecks, written to
SYS$LOGIN:RMUBUGCHK.DMP

This bugcheck dump file contains information specific to RMU that may
have resulted from a problem with one of the RMU utilities.

• Oracle Rdb run-time services bugchecks, written to
SYS$LOGIN:RDSBUGCHK.DMP

This bugcheck dump file contains process-specific information. Typically,
this is the best place to determine what went wrong.

• Database recovery (DBR) bugchecks, written to
SYS$SYSTEM:RDMDBRBUG.DMP

This bugcheck dump file contains process-specific information for the
detached DBR process. This file often indicates file access problems, as
shown in the examples in Section A.3, or system resource limitations, such
as insufficient system process control block (PCB) slots.

• AIJ log server (ALS) bugchecks, written to
SYS$SYSTEM:RDMALSBUG.DMP

This bugcheck dump file contains process-specific information for the
detached ALS process. This file often indicates file access problems, as
shown in the examples in Section A.3, or system resource limitations such
as insufficient system PCB slots.

• AIJ backup server (ABS) bugchecks, written to
SYS$SYSTEM:RDMABSBUG.DMP

This bugcheck dump file contains process-specific information for the
detached ABS process. This file often indicates file access problems, as
shown in the examples in Section A.3, or system resource limitations, such
as insufficient system PCB slots.

• Monitor bugchecks, written to SYS$SYSTEM:RDMBUGCHK.DMP

Monitor bugs (these are very rare) do not produce a bugcheck file; they are
written to the monitor log file, which contains process-specific information
for the monitor process.

• A monitor log file, written to SYS$SYSTEM:RDMMON.LOG

A–2 Handling Bugcheck Dumps

This is the monitor log file used by the RDMS_MONITOR process. It
contains information about database attaches and detaches, recovery
processes startup and completion, and other database system log messages.

You can examine the log file after entering an RMU Monitor Reopen_Log
command, or use your favorite editor in read-only mode to examine the log
file contents while it is being written.

Immediately useful information can be extracted from the bugcheck dump
(.dmp) files by using the operating system SEARCH command shown in
Example A–1.

Example A–1 Using the SEARCH Command to Find the Exception in an
Oracle Rdb Run-Time Services Bugcheck Dump File

$ SEARCH /WINDOW SYS$LOGIN:RDSBUGCHK.DMP "** Exception"

A.2.2 Locations of Bugcheck Dump Files
By default, RMU and Oracle Rdb run-time services dump files are written to
the directory defined by the SYS$LOGIN logical name for the process that
receives the bugcheck. DBR, ALS, and ABS bugcheck dumps are always
written to the directory defined by the SYS$SYSTEM logical name. When
Oracle Rdb produces a bugcheck dump, an error message similar to that shown
in Example A–2 is displayed.

Example A–2 Error Message for an Oracle Rdb Run-Time Services
Bugcheck Dump

%RDMS-F-BUGCHECK, fatal, unexpected error detected
%RDMS-I-BUGCHKDMP, generating bugcheck dump file SYS$LOGIN:RDSBUGCHK.DMP;1

In Example A–2, the bugcheck dump occurred during an Oracle Rdb run-time
services operation, as the RDS prefix to the file name (RDSBUGCHK.DMP)
indicates.

Example A–3 shows an error message received while running RMU or an
application program.

Handling Bugcheck Dumps A–3

Example A–3 Error Message for an RMU Bugcheck Dump

%RDMS-F-BUGCHECK, fatal, unexpected error detected
%RDMS-I-BUGCHKDMP, generating bugcheck dump file SYS$LOGIN:RMUBUGCHK.DMP;1

If a bugcheck dump occurs during a DBR operation, you may receive one
bugcheck dump file for each detached recovery process that failed.

A.2.3 Defining the RDM$BUGCHECK_DIR Logical Name
When you define the RDM$BUGCHECK_DIR logical name at the system level
with SYSNAM privilege, you cause Oracle Rdb to write all RMU and Oracle
Rdb run-time services bugcheck dumps to a common directory. DBR, ALS,
and ABS bugcheck dumps by default are written to SYS$SYSTEM. However,
when you define the RDM$BUGCHECK_DIR logical name, DBR, ALS, and
ABS bugcheck dumps will also be written to the new location specified by this
logical name.

When users reach their disk quotas in SYS$LOGIN due to a bugcheck dump,
and if the RDM$BUGCHECK_DIR logical name is not specified to another
device, the bugcheck dump overflows to the KOD$TT file. In this case, a DBR
process is created with an output device of KOD$TT. Also, bugcheck dumps are
written to the system disk, and, if the system disk becomes full, the overflow
may also end up in KOD$TT. Under normal circumstances, nothing is written
to KOD$TT and therefore the operating system TYPE command shows that
nothing is in the KOD$TT file.

Define the RDM$BUGCHECK_DIR logical name so that you can tell by
looking in a single directory if a database user received a bugcheck dump.
Because bugcheck dump files contain dumps of current database page buffers,
these files may contain sensitive data you should protect. Defining the
RDM$BUGCHECK_DIR logical name helps ensure the security of your
database and prevents accidental deletions of important bugcheck dump files.
Users must have appropriate OpenVMS privileges and quotas to write to the
specified output directory and device.

Define the RDM$BUGCHECK_DIR logical name as shown in Example A–4.
Once defined, all RMU and Oracle Rdb run-time services bugcheck dumps
are written to the SYS$MANAGER directory, including DBR, ALS, and ABS
bugcheck dumps.

A–4 Handling Bugcheck Dumps

Example A–4 Defining the RDM$BUGCHECK_DIR Logical Name

$ DEFINE/SYSTEM RDM$BUGCHECK_DIR "SYS$MANAGER:"

If you use the RDM$BUGCHECK_DIR logical name to direct output from
bugcheck dumps to a common directory, you can set protection on the common
directory to make sure no bugcheck dump is ever deleted accidentally before
you have a chance to examine it and, if necessary, submit it to Oracle Rdb.

A.3 Understanding Error Messages and Bugcheck Dump
Exceptions

Usually, a bugcheck dump indicates that something is wrong with the current
processing environment, and not with the database software itself. On
occasion, a restriction may be the cause of the bugcheck dump, required files
cannot be accessed, the process may have insufficient process quotas, or some
system resources may be exhausted. The following sections describe typical
problems, the bugcheck dump information that results, and recovery from the
problem.

A.3.1 The %RDMS-F-TERMINATE Error
The following error message is issued by the Oracle Rdb monitor whenever a
process tries to invoke a database that cannot be recovered:

%RDMS-F-TERMINATE, database recovery failed --- access to database denied
by monitor

In some cases, database recovery involves starting a detached process that
reads the recovery-unit journal (.ruj) file and performs a rollback on the user’s
behalf. The process runs the image SYS$SYSTEM:RDMDBR, and has a
process name that starts with RDB_RB_n.

A database that cannot be recovered is one in which a rollback cannot be
performed by the database system. The rollback cannot be performed because
the data is in an inconsistent state. Any access should be prevented so users
do not read or modify data that is not normally visible.

If the following error message is received by any database user, examine the
dump file RDMDBRBUG.DMP in the system directory of the cluster node on
which the error was reported:

Database recovery failed --- access to database denied by monitor

Handling Bugcheck Dumps A–5

A database cannot be recovered for the following reasons:

• The .ruj file could under certain circumstances remain in the user’s
directory rather than in the top-level directory on the device in which login
information is defined. After a system failure or process deletion, this
file has been deleted or renamed, or it is on a disk that has not yet been
remounted.

When the database is created (using SQL or Oracle Rally), you can
specify the maximum number of users allowed to concurrently access the
database. This is specified using the NUMBER OF USERS IS option
in the SQL CREATE SCHEMA statement. Each user is allocated space
in the database root (.rdb) file to record such information as the .ruj file
specification.

You can use the RMU Dump Users command to view this information.

• The after-image journal (.aij) file cannot be extended by the recovery
process. This may indicate that no remaining disk quota or no free space
remains on the target disk.

• The .aij file cannot be located. This may occur because a systemwide
logical name used originally in the after-image journal file name is either
not currently defined or has been changed to refer to a different disk or
directory.

Example A–5 shows exception reports extracted from RDMDBRBUG.DMP
files.

Example A–5 Exception Reports Extracted from RDMDBRBUG.DMP Files

***** Exception at 00004360 : DBR$RECOVER + 00000236
%RDMS-F-FILACCERR, error opening recovery-unit journal file
$DUA0:[RDM$RUJ]DB$0097232208D5D240.RUJ;1
-RMS-E-FNF, file not found

***** Exception at 00013616 : UTIO$READ_FILE + 000000F2
%RDMS-F-FILACCERR, error reading disk file
-SYSTEM-F-VOLINV, volume is not software enabled

***** Exception at 00004E4E : AIJ$OPEN + 000001EA
%RDMS-F-FILACCERR, error opening after-image journal file
$DUA1:[CHELSEA]E003.AIJ;1
-RMS-E-FNF, file not found

(continued on next page)

A–6 Handling Bugcheck Dumps

Example A–5 (Cont.) Exception Reports Extracted from RDMDBRBUG.DMP
Files

***** Exception at 00012873 : UTIO$MODIFY_EOF + 00000235
%RDMS-F-FILACCERR, error extending file
-SYSTEM-W-DEVICEFULL, device full - allocation failure

A.3.2 Exceeding Quotas
Many problems can be detected and corrected by examining the process-level
bugcheck dump file, RDSBUGCHK.DMP. The most common cause of Oracle
Rdb bugcheck dumps is the ‘‘Exceeded Quota’’ problem. This section looks at
two types of quotas and the reasons why they were exceeded.

A.3.2.1 Disk Quota Exceeded
While processing a query, Oracle Rdb may require temporary files. While
using the OpenVMS Sort/Merge utility (SORT/MERGE), Oracle Rdb may
require disk space for sorting. The latter case results in the exception shown
in Example A–6.

Example A–6 Exception Generated from Exceeding the Disk Quota

***** Exception at 001A2B53 : SORLIBSIGNAL + 00000009
%SORT-E-WRITEERR, error writing DISK3:[SHILOH]SORTWORK1.TMP;
-SYSTEM-F-EXDISKQUOTA, disk quota exceeded

Oracle Rdb uses SORT/MERGE to perform operations that require an ordered
set of records. These operations include the SQL ORDER BY and DISTINCT
clauses, and join operations. SORT/MERGE is also used when a sorted index is
defined using the SQL CREATE INDEX statement, or during an SQL IMPORT
operation.

You can use the logical name RDMS$BIND_SORT_WORKFILES to specify
how many work files SORT/MERGE is to use if work files are required. The
default is 2 work files (the SORT/MERGE default) and the maximum is 10
work files. The location of the work files can be individually controlled by the
SORTWORKn logical names (where n is a number from 0 to 9). Refer to the
OpenVMS documentation set or online help for more details.

Handling Bugcheck Dumps A–7

You need to specify these logical names before you run a query if the amount
of data being accessed during the query or during index creation does not fit in
a work file in your default directory. Some performance improvement can be
achieved by distributing the sort work files onto separate, lightly loaded disks.

The batch command procedure shown in Example A–7 includes logical name
definitions that enable four work files to be created, each on a separate disk.

Example A–7 Batch Command Procedure to Create Four Work Files, Each
on a Separate Disk Volume

$ DEFINE RDMS$BIND_SORT_WORKFILES "4"
$ DEFINE SORTWORK0 DISK1:
$ DEFINE SORTWORK1 DISK2:
$ DEFINE SORTWORK2 DISK3:
$ DEFINE SORTWORK3 DISK4:
$ RUN END_OF_MONTH_REPORT

SORT/MERGE might not use all the work files, so many SORTWORK logical
names can be defined as safeguards against unexpected exceptions during
database processing.

If the disk quota on the default disk is exceeded, the bugcheck dump is written
to the user’s terminal. This may indicate that the exception was in fact ‘‘disk
quota exceeded.’’

A.3.2.2 Process Quota Exceeded
The following process quotas can also cause exceptions:

• Lock queue limit (ENQLM) too low

• Insufficient page file quota (PGFLQUOTA)

• Insufficient virtual memory (VIRTUALPAGECNT)

Often, as in Example A–8, the error messages themselves do not give many
clues to which quota was exceeded. The condition returned to Oracle Rdb by
the OpenVMS system contains insufficient information to correctly report all
the quotas that are exceeded.

A–8 Handling Bugcheck Dumps

Example A–8 Exception Generated from Exceeding the Paging File Quota
(PGFLQUOTA)

***** Exception at 002A4DD7 : KOD$GET_VM + 0000026B
%RDMS-F-EXQUOTA, exceeded quota
-SYSTEM-F-EXQUOTA, exceeded quota

In these cases, check the name of the routine to diagnose the problem. In
Example A–8, the routine KOD$GET_VM indicates that the Oracle Rdb
executive attempted to expand the process virtual memory (VM) and failed.
You should check that the process has sufficient page file quota (PGFLQUOTA).
The bugcheck dump file also reveals that this process had 10,000 pages
allocated for PGFLQUOTA, which is usually too small for most applications.

A.3.3 Using an Invalid dbkey in an Update Transaction
If you use an invalid database key (dbkey), for example, dbkey=0, or if your
dbkey scope is commit and you delete a record, commit the transaction, and
then attempt to use that same dbkey again as a variable in your program in
another transaction, Oracle Rdb produces a bugcheck dump rather than return
an appropriate error code and message. Oracle Rdb only guarantees that the
dbkey points to the same record for the life of the transaction in which the
dbkey is retrieved when the dbkey scope is commit. Oracle Rdb currently does
not support checks for invalid dbkeys.

To remedy this restriction with the SQL DBKEY SCOPE IS TRANSACTION
option, set the dbkey scope to ATTACH when you attach to the database. You
can use the same dbkey as a variable by other transactions in your program.
When the scope is ATTACH, Oracle Rdb guarantees that the dbkey points to
the same record until you detach from the database with a FINISH statement.
For more information on the proper use of the DBKEY SCOPE IS option when
you attach to the database, see the Oracle Rdb7 SQL Reference Manual.

A.4 Reporting a Bugcheck Dump
In general, whenever you receive a bugcheck dump, you should report it to
Oracle Rdb. There are some cases, however, when either the bugcheck dump
was not caused by a software error, or you may be able to solve the problem
first.

Handling Bugcheck Dumps A–9

A.4.1 Getting a Bugcheck Dump
Bugcheck dumps are caused by the following conditions:

• Setting the dbkey value to an invalid number such as 0

• Setting OpenVMS system parameters improperly

See the Oracle Rdb7 Release Notes and the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on setting these parameters.

• Setting user account parameters improperly

See the Oracle Rdb7 Release Notes and Oracle Rdb7 Guide to Database
Performance and Tuning for more information on setting user account
parameters.

• Encountering a software error

A.4.2 Examining a Bugcheck Dump
When you examine the bugcheck dump file, pay careful attention to the name
of the database being accessed. You can examine the bugcheck dump file by
printing it out or by using an OpenVMS text editor as shown in Example A–9.

Example A–9 Using an OpenVMS Text Editor to Read the Bugcheck Dump
File

$ EDIT/READ RMUBUGCHK.DMP

Search the file for a string of five asterisks (*****). The five asterisks mark
the location in the file of the exception code. The exception code describes
the error that caused the bugcheck dump. If you see an OpenVMS operating
system error such as PAGRDERR or PARITY, your problem is most likely a
hardware, rather than a software error (see the OpenVMS documentation or
online help for a complete list of OpenVMS operating system error messages).
Try to resolve the error by correcting the problem with your hardware.

If the error message indicates that database corruption caused the bugcheck
dump, you must restore your database from the most recent full backup copy.
See Chapter 7 for more information on restoring your database. See Chapter 5
for information on verifying the integrity of your database once it is restored
and on possible causes of database corruption.

You can also examine the system error log to determine why the database
was corrupted. Look for memory, bus, controller, and disk errors. Check the
system error logs generated since the corrupted page of the database was last
modified.

A–10 Handling Bugcheck Dumps

If there is any other error message in your bugcheck dump file, contact your
Oracle representative.

A.4.3 Contents of a Bugcheck Dump
An Oracle Rdb bugcheck dump includes a KODA portion with context related
to the record storage system (RSS) and a client portion with context related to
Oracle Rdb.

The KODA portion contains the following elements:

• A header

• A stack dump

• System information (SYI) and job process information (JPI)

• Client (KODCLIENT) information

• Root file information (in TROOT)

• TROOT global buffer data structures

• Global buffer journal (GBJ) context

• User process block, both KODA and CLIENT

• Stream context

• Object manager (OBJMAN) information (access to root file sections in
memory)

• Locking information, both OpenVMS locks and lock cache

• AIJ context and RUJ context

• Scan blocks

• Data I/O (DIO) (segment) context

• Page I/O (PIO) (page) context

PIO physical area control block (PACB) context

PIO buffer control block (BCB) context

I/O control block (buffer pool) (IOCB) context

PIO batch-write context

Page buffers

• Security audit context

• Virtual memory (VM) utilization

Handling Bugcheck Dumps A–11

• KODA recovery utility (AIJ rollforward) (KUTREC) context

• AIJ backup context

• System lock information (GETLKI output)

The client (Oracle Rdb) portion contains the following elements:

• A header

• A dump-specified item if RDMS$DEBUG_FLAGS is defined

• A data definition language (DDL) buffer dump if DDL is active when the
dump occurs

• Database (DB) handles of databases attached

• A request block

• List (segmented string) information

• A database definition (SDBD) block

• Symbol tables for tables, indexes, and constraints

• A ready status vector for logical area (SLID)

• A run-time table block (STBL)

• A run-time relation map block (STBL map)

• Run-time version blocks and symbol table per table (SVER)

• A column block per table (SCOL)

• An index block per table (SNDX)

• Index map blocks (SNDX-MAP)

• A run-time collating block (SCOLLATE)

• Query optimization blocks

• Execution structures

This information is useful to an Oracle Rdb software engineer trying to
reproduce the error and solve the problem. Especially useful are the KODA
header and stack dump portions of the bugcheck dump. The KODA header
portion describes the version of Oracle Rdb that was running, what type of
machine and the software revision level, the time the bugcheck occurred, and
the compiled (build) time of Oracle Rdb components. The stack dump denotes
the names of the routines that were executing at the time of the bugcheck
dump. The key information is the prefix of the routine name for the routine
that was running when the bugcheck dump occurred.

A–12 Handling Bugcheck Dumps

Index

A
ABM page, 13–8

uniform page format, 13–8e
Abnormal termination

of transaction, 10–4
Access control entry (ACE)

for OpenVMS and Oracle RMU, 8–2
Access control list (ACL)

OpenVMS and Oracle RMU ACE, 8–2
After-image journal (.aij) file

allocation and extent size, 9–14
avoiding switchover suspension, 9–36
backing up

multiple fixed-size
to disk, 9–26

single extensible
to tape, 9–25

causes for an inaccessible journal file, 9–75
checkpointing and backing up, 9–53
contents, 9–77
disk space requirements, 9–57
displaying contents, 9–77
fast commit processing and journal file

switching, 9–57
location, 9–9
optimizing, 9–52
overview, 9–8, 9–10
recovering a lost extensible file, 9–76
recovering a lost fixed-size file, 9–77
recovery, 9–58, 9–59
specifying number of blocks, 9–12
switchover, 9–35
using disk and tape media, 9–20

After-image journal file backup
using disk and tape media, 9–20

After-image journaling
AIJ request blocks, 9–7
avoiding switchover suspension, 9–36
causes for an inaccessible journal file, 9–75
devising a strategy, 9–4
disabling, 9–8
enabling, 9–5
extensible journals, 9–10
fixed-size journal file switchover, 9–35
journal file, 9–8, 9–10
modifying during a restore operation, 8–40
multiple fixed-size journal files, 9–10
procedures, 9–1
recommended and required usage, 9–2
recovering a lost extensible journal file, 9–76
recovering a lost fixed-size journal file, 9–77
strategy for list data on WORM media, 9–16
transaction sequence number, 9–80
usage with the Commit To Journal option,

9–58
usage with the fast commit option, 9–53
using the RMU Dump After_Journal

command, 9–77
AIJ request blocks

require extra OpenVMS pages, 9–7
AIP

uniform page format, 13–10e
Alarms

Audit type, interpreting, 3–18
Daccess type, interpreting, 3–18
Oracle RMU type, interpreting, 3–20
Protection type, interpreting, 3–20
security, 3–3, 3–17

Index–1

ALLOCATION IS option, 9–12
ALTER DATABASE statement, 10–6

JOURNAL EXTENT IS option, 9–5
NUMBER OF RECOVERY BUFFERS, 10–6

Altering corrupt databases, 6–3
Area bit map

See ABM page
Area inventory page

See AIP
ASTLM parameter

values, 8–36
Attach command (RdbALTER), 6–4
Attaching to a database, 4–5

in RdbALTER, 6–4
Audit

See Audit events
Audit events

disabling Daccess, 3–5, 3–9
disabling event information, 3–12
enabling Daccess, 3–5, 3–9
enabling event information, 3–12

Auditing
audit event information

enabling or disabling, 3–12
Daccess level security auditing, 3–8, 3–9
event-level security auditing, 3–8, 3–12
four levels of security auditing, 3–7
monitoring resources, 3–4
specific objects, 3–9
specific object types, 3–9
starting, 3–13
stopping, 3–8, 3–13
top-level security auditing, 3–8, 3–13
user-level security auditing, 3–7, 3–9

Audit journal records, 3–3, 3–22
defining database table for storing, 3–22
defining relation for storing, 3–22
reviewing, 3–24

Audit trail
in RdbALTER, 6–25

Availability features, 1–8
cluster environment automatic recovery, 1–10
disable logging for write-once storage areas,

1–10

Availability features (cont’d)
fault-tolerant Rdb databases, 1–9
maintaining optimum database integrity,

1–15
maintenance

analyze operations, 1–16
automatic cleanup activities, 1–10, 1–15
online backup operations, 1–9
online DBA activities, 1–11
online move operations, 1–10
online recovery operations, 1–10
online restore operations, 1–10
verify operations, 1–16

B
Backing up a database, 7–1

controlling tape concurrency, 7–68
optimizing tape utilization, 7–71
preloading and synchronizing backup tapes,

7–69
Backup

by-area incremental backup, 7–35
by area operation, 7–8
by storage area, 7–19
complete incremental backup, 7–35
database backup (.rbf) file, 7–9
Digital UNIX tar , 7–13
displaying root file information, 7–77
examples, 9–82

read-only and updatable storage areas,
7–42

sample procedure, 7–26
file management, 7–19
frequency, 7–16
full, 7–8, 7–32e
full and complete, 7–17
full versus incremental, 7–18
incremental, 7–8, 7–38

comparing timestamps, 7–38
disk I/O costs, 7–41
performance, 7–37
Scan_Optimization qualifier, 7–37
selecting pages, 7–38
summary statistics, 7–41
to tape, 7–36

Index–2

Backup (cont’d)
incremental sample commands, 7–35
introduction to Oracle RMU backup, 7–3
multiple parallel processes, 7–4
multithreaded, 7–2
off line, 7–22
on line, 7–56
on line versus off line, 7–22
OpenVMS Backup utility, 7–13
options, 7–8
parallel, 7–23
performance

calculate working set, 7–29
quota-exceeded problems, 8–36
read/write storage areas, 7–22
read-only and write-once storage areas, 7–20
read-only storage areas, 7–21
single CPU process, 7–3
specifying file protection, 7–13
strategies, 7–15, 9–19
to disk media, 7–61
to tape, 7–34
to tape media, 7–62
trade-offs

incremental backup versus multiple
journal files, 9–19

traditional backups, 7–2
underrun errors, 7–71
using shadowed or mirrored disks, 7–15
when to back up journal files, 9–22

Backup After_Journal command
tape label checking, 7–73

Backup command
See RMU Backup command

Before-image journal
See Recovery-unit journal (.ruj) file

Bit vectors, 13–8
Bugcheck dump

(ABS) RDMABSBUG.DMP file, A–2
(ALS) RDMALSBUG.DMP file, A–2
causes, A–7, A–10
contents of, A–11
controlling placement of, A–4
database recovery (DBR) process, A–3
(DBR) RDMDBRBUG.DMP file, A–2

Bugcheck dump (cont’d)
DBR process

output device KOD$TT, A–4
error messages, A–5 to A–9

disk quota exceeded, A–7
insufficient page file quota (PGFLQUOTA)

, A–8
insufficient virtual memory

(VIRTUALPAGECNT), A–8
invalid dbkey, A–9
lock queue limit (ENQLM) too low, A–8

examining, A–10
example error messages, A–6
exception code, A–10
locations, A–3
Oracle Rdb run-time services, A–3
Oracle RMU, A–3
reporting, A–9
(RMU) RMUBUGCHK.DMP file, A–2
(Run-time services) RDSBUGCHK.DMP file,

A–2
(SQL) SQLBUGCHK.DMP file, A–2
SYS$SYSTEM:RDMBUGCHK.DMP file, A–2
types of, A–2
typical message, A–3

By-area backup
guidelines for file management and recovery,

7–19
incremental, 7–44
read-only and write-once storage areas, 7–44
strategies, 7–19
strategies for read/write storage areas, 7–22
strategies for read-only and write-once storage

areas, 7–20
strategies for read-only storage areas, 7–21
timestamps, 7–41
updatable storage areas, 7–44

C
CDD

information
moving during restore, 8–49

Index–3

Changing database page contents, 6–12
Changing the radix in RdbALTER, 6–13, 6–25
Checking for database corruption, 5–19
Checking tape labels with Oracle RMU, 7–73
Checksum, 7–73, 12–3
Checksum_Verification qualifier, 7–31
Clearing an inconsistent flag, 6–23
Closing a database, 4–1, 4–7

for a maintenance operation, 4–9
Cluster

after-image journal file placement, 9–9
closing a database, 4–14
cluster-accessible journal files, 10–3
opening a database, 4–3

Commit command (RdbALTER), 6–15, 6–26
Committing a transaction

in RdbALTER, 6–26
Commit To Journal option

usage with after-image journaling, 9–58
Common data dictionary

information
duplicating during restore, 8–48
during restore, 8–51

Completing a transaction
in RdbALTER, 6–15, 6–26

Constraints
checking, 5–4, 5–7
checking with RMU Verify, 5–9
verifying, 9–85
violating a definition, 5–3

Contents
ABM page, 13–9
AIP, 13–10, 13–11
data page with hashed index, 12–26
display and interpret

file contents, 11–1, 13–1
storage pages, 12–1

hashed index node record, 12–28
index node record, 12–21
journal file, 9–77
line index, 12–4
lists, 12–10
locked and unlocked free space, 12–6
page header, 12–3
page tail

Contents
page tail (cont’d)

mixed storage area, 12–35
uniform storage area, 12–36

.ruj file, 10–8
snapshot page, 11–18
SPAM page, 13–7, 13–12
storage segment, 12–8
TSN, 12–5
user-stored records, 12–9

Coordinator processes, 7–5
Copying a database into a directory owned by a

resource identifier, 8–2
Corruption

causes of database corruption, 5–2
checking for database corruption, 5–3
clearing a corruption flag, 6–5
clearing an inconsistent flag, 6–23
corrupt page table, 5–21, 5–32, 9–60
detecting, 5–19
example, 5–33

data integrity, 5–43
page header, 5–33
sorted index, 5–38

in batch-update mode, 5–3
patching the database, 6–3
repairing the database, 6–1

Corrupt page table, 5–21, 5–32, 8–19, 9–60
CREATE DATABASE statement, 10–6, 13–12

NUMBER OF RECOVERY BUFFERS IS
option, 10–6

SPAM pages, 13–12
Creating databases

space management, 13–12
tailoring the system, 13–12

Cyclic redundancy check (CRC)
See also Underrun errors
automatic error correction, 7–72
avoiding underrun errors, 7–71
Checksum option, 7–73
end-to-end error detection, 7–73
options, 7–72

Index–4

D
Daccess audit events

enabling or disabling, 3–5, 3–9
Data

moving, 6–17
storage page header, 12–3
storage page structure, 12–1

Database
attaching to, 4–5, 4–6
backing up

by-area operation, 7–8
checking tape labeling, 7–73
controlling tape concurrency, 7–68
efficient use of multiple tape drives, 7–67
example, 7–26, 7–32, 7–34
frequency of, 7–16
full backup operation, 7–8
incremental, 7–35
incremental operation, 7–8
incremental storage area backup, 7–44
multiple tape drives, 7–65
multithreaded backup operation, 7–2
off line, 7–22
on line, 7–56
optimizing tape utilization, 7–71
preloading and synchronizing backup

tapes, 7–69
quota-exceeded problems, 8–36
read-only storage areas, 7–44
recommendations for, 7–25
sample procedure, 7–26
single tape drive, 7–63
to tape, 7–34
types of, 7–8
updatable storage areas, 7–44
write-once storage areas, 7–44

backups, 7–1
causes of corruption, 5–2
changing page contents, 6–12
characteristics, 2–16
checking for corruption, 5–3
checkpointing and backing up journal files,

9–53

Database (cont’d)
Checksum_Verification qualifier, 7–31
closing, 4–1, 4–7, 4–11

for maintenance operations, 4–9
corruption causes, 5–2
corruption example, 5–33

data integrity, 5–43
page header, 5–33
sorted index, 5–38

creating
See Creating databases

database administrator (DBA), 1–1
database recovery (DBR) process, 10–4
design space management, 13–12
determining when it is open, 4–3
displaying and interpreting

file contents, 11–1, 13–1
page contents, 6–10
security auditing characteristics, 3–2
storage pages, 12–1

displaying header information, 7–77
duplicate database, 8–47
example of default verify operation, 5–17
example of full verify operation, 5–17
improving verify performance, 5–16
integrity, 5–4
journal file performance, 9–52
journaling, 10–1
management requirements, 1–2
monitoring, 2–1
moving files, 6–16, 8–49
opening, 4–1, 4–2, 4–6

by attaching, 4–6
optimizing journal file, 9–52
options file, 8–45
page content changing, 6–12
pages

restore example, 8–18
preparing to restore, 8–1
read-only and updatable storage areas

backup example, 7–42
considerations, 7–42
restore example, 8–14

recovery, 7–1, 8–1, 9–58, 10–1
reorganizing single to multifile, 8–52

Index–5

Database (cont’d)
reporting bugcheck dumps, A–9
restoring, 8–1

checking database version numbers, 8–13
creating duplicate database, 8–47
disabling SPAM pages, 8–44
enabling SPAM pages, 8–44
example, 8–13
full restore operation, 8–5
incremental restore operation, 8–10
modifying after-image journaling, 8–40
modifying database characteristics, 8–37
modifying options, 8–45
modifying page size, 8–43
modifying thresholds, 8–43
moving dictionary information, 8–50
moving files, 8–49
multiple tape drives, 8–33
quota-exceeded problems, 8–36
read/write storage areas, 8–18
setting snapshot allocation size, 8–44
setting the Noworm attribute, 8–44
setting the Worm attribute, 8–44
single tape drive, 8–32

restoring into directory owned by a resource
identifier, 8–2

restricting access, 4–3
root file

See Root file
search key, 12–30
setting global buffers, 4–3
snapshot pages, 11–25
space management, 13–12
storage page structure, 12–1, 12–2
strategy to detect problems, 5–9
table for storing security audit journal records,

3–22
tracking open and close operations, 4–4
user information, 2–12
verification troubleshooting, 5–21

checksum check, 5–23
data integrity corruption, 5–25
summary, 5–31

verifying, 5–1
problems detected, 5–7

Database
verifying (cont’d)

reasons for, 5–1
what happens, 5–3
what is checked, 5–4, 5–12

verifying constraints, 5–48
Database administrator (DBA)

primary tasks, 1–1, 1–2
Database automatic recovery process

improving performance, 10–6
Database backup (.rbf) file, 7–9

keeping incremental backup operations, 7–28
purging, 7–28

Database corruption
after system failure, 5–20
causes, 5–2
checking for, 5–3
clearing a corruption flag, 6–5
clearing an inconsistent flag, 6–23
detecting, 5–19
example, 5–33

data integrity, 5–43
page header, 5–33
sorted index, 5–38

in batch-update mode, 5–3
patching, 6–3
repairing, 6–1

Database design
space management, 13–12

Database files
moving, 6–16
storage pages, 12–1
types of files, 13–1

Database key (dbkey)
components of, 12–4
compressed, 12–23
hashed indexes, 12–26, 12–30

overflow, 12–33
index node segments, 12–20
sorted indexes

duplicate index node, 12–23
uncompressed, 12–23

Database page
ABM pages, 13–8
AIPs

Index–6

Database page
AIPs (cont’d)

uniform page format, 13–10e
area bit maps

uniform page format, 13–8e
checksum, 12–3
common format used in RMU Dump output,

11–2
displaying contents, 6–10
fragmented record, 12–36, 12–37
free space, 12–3, 12–6
fullness threshold, 13–1
hashed index, 12–26

structure with page pointer, 12–33
header, 12–3
index node record, 12–18, 12–20, 12–23
line index, 12–4
list record, 12–10
locked and unlocked free space, 12–4, 12–6,

12–7
mixed page format

SPAM intervals, 13–15f
SPAM page, 13–12e

number, 12–3
page tail

mixed storage area, 12–35
uniform storage area, 12–35

snapshots, 11–25
space area management (SPAM) pages, 13–5e
SPAM entry information, 13–19t
SPAM interval formula, 13–16
storage area number, 12–3
storage segment structure, 12–8
structure with system record, 12–32
timestamp, 12–3
TSN index, 12–5
units, 12–1
user-stored record, 12–9

Database record
hashed index, 12–28

Database recovery (DBR) process, 10–4
creating, 10–5

Database reorganizing
single to multifile, 8–52

Database storage page structure, 12–1
Database verification, 5–4

after changes in RdbALTER, 6–25
after system failure, 5–2
after using RdbALTER, 6–15
database page checking, 5–19
effects on other users, 5–4
example of default verify operation, 5–17
example of full verify operation, 5–17
excluding all data, 5–9
frequency to perform, 5–4, 5–9
full, 5–4, 5–9
how it works, 5–25
improving verify performance, 5–16
including all data, 5–9
incremental, 5–17
optional before backup and after restore

operations, 5–1
problems detected, 5–7
problem suspected, 5–2
purpose, 5–1
resource constraints, 5–2
restrictions on READY mode, 5–4
specific areas, 5–38
strategy, 5–9
troubleshooting, 5–21

checksum check, 5–23
data integrity, 5–25
summary, 5–31

what happens, 5–3
what verify checks, 5–4, 5–12

Data compression
storage efficiency with logical area thresholds,

13–2
Date and time stamp

See Timestamp
DBA

See Database administrator (DBA)
Dbkey

See Database key (dbkey)
DBR process

See Database recovery (DBR) process

Index–7

DECnet network protocol
restriction when restoring a database, 8–1

Deposit command (RdbALTER), 6–12
Detach command (RdbALTER), 6–5, 6–27
Detaching from a database

in RdbALTER, 6–5
Digital UNIX

LSM mirrored disks, 7–15
tar , 7–13

DIOLM parameter
values, 8–36

Directories
recovery-unit journals, 10–2

Disabling audit event information, 3–12
Disabling Daccess audit events, 3–5, 3–9
Disk

incremental backup command, 7–35
Disk backups

guidelines, 7–61
recommendations for after-image journal file

backup, 9–20
Disk device

backing up after-images, 9–20
reusing after-image backup media, 9–21

Disk space requirements
fast commit transaction processing enabled

and after-image journal backup, 9–57
journal file size, 9–88

Display command (RdbALTER), 6–10
Displaying database page contents, 6–10
Displaying user information, 2–12
Dump After_Journal command

tape label checking, 7–73
Dump Backup command

tape label checking, 7–73
Duplicate index nodes, 12–19, 12–23
Duplicate node record

hashed index structure, 12–28

E
Enabling audit event information, 3–12
Enabling Daccess audit events, 3–5, 3–9

Error
See Bugcheck dump

Errors
monitoring tape drives, 7–76
submitting software problem reports, A–1
underrun, 7–71

Exception condition
See Bugcheck dump

Exclude qualifier
omitting specific storage areas, 7–44

Exit command (RdbALTER), 6–27
EXPORT statement

when to use, 8–52
Extensible journals, 9–10

F
Fast commit option

usage with after-image journaling, 9–53
Fast commit processing

effect on journal file switchover, 9–57
Fast commit transaction processing enabled and

after-image journal backup
disk space requirements, 9–57

Fault tolerance, 1–9
Fetching a page (RdbALTER), 6–7
Fetching a storage area (RdbALTER), 6–6
Fixed-size journal files

effect of fast transaction processing, 9–57
Fragmentation

frag flags, 12–9
record, 12–36 to 12–41
storage records, 12–36

Fragment chain pointer, 12–41
Free space

database page, 12–7
find with SPAM pages, 13–12
locked, 12–4, 12–6
unlocked, 12–6

Full database backup, 7–32
comparing with incremental backup, 7–18,

7–41
requirements for using, 7–17
starting, 7–32

Index–8

Full database verification, 5–9
Fullness threshold, 13–1, 13–17

G
Global buffers

showing information on, 2–12

H
Hash bucket record

hashed index structure, 12–28
Hashed index

duplicate node record, 12–28
hash bucket record, 12–28
node records, 12–25
SYSTEM record, 12–28

Help command (RdbALTER), 6–27
Help facility, xxiii
Help on line, xxiii

I
IMPORT statement, 10–6

NUMBER OF RECOVERY BUFFERS IS
option, 10–6

when to use, 8–52
Inconsistent flag

clearing, 6–23
Incremental database backup

comparing with full backup, 7–18, 7–41
determining which pages have changed, 7–38
for selected storage areas, 7–44
measuring benefits, 7–41
optimizing performance, 7–37
sample command lines, 7–35
starting, 7–34

Incremental verification, 5–17
Index

duplicate nodes, 12–19, 12–23
nodes, 12–19
overflow nodes, 12–19

Index node record, 12–18
data region length, 12–22
example, 12–20, 12–23

Index node record (cont’d)
fragmentation, 12–20
index scroll, 12–22
level type, 12–22
storage record type ID, 12–22
uncompressed owner dbkey, 12–22

Index node segment, 12–8

J
JOURNAL EXTENT IS option, 9–5
Journaling, 10–1

See also Recovery-unit journal (.ruj) file
after-image, 9–1
after-image journal directory, 9–9
AIJ end-of-file, 9–14
backing up

after-images to disk, 9–20
after-images to tape, 9–20
a single extensible file, 9–25
multiple fixed-size after-image to disk,

9–26
multiple fixed-size files, 9–26
reusing after-image backup media, 9–21
reusing backup media, 9–21
single extensible after-image to tape,

9–25
common directories, 10–2
devising a strategy, 9–4
directory protection, 9–9
disabling, 9–8
enabling, 9–5
example, 9–82
file protection, 9–88
file size, 9–88
incomplete recovery, 10–1
information not written to journal file, 9–3
information written to journal file, 9–3
logical end-of-file, 9–14
logical names, 9–9
multiple fixed-size files, 9–10
multiuser access, 10–2
optimizing after-image journaling, 9–52
performance, 9–5, 9–9, 9–52, 10–2
physical end-of-file, 9–14

Index–9

Journaling (cont’d)
placement, 9–9
recovery, 9–58
recovery-unit journal, 10–2
relationship between allocation and extent

size, 9–14
requirements for, 9–1
reviewing security audit records, 3–24
.ruj file placement, 10–2
security audit, 3–3, 3–22
setting allocation size, 9–12
setting extent size, 9–6
single extensible journal file, 9–6, 9–10, 9–14
strategy for list data on WORM media, 9–16
trade-offs

multiple journal files or incremental
backup, 9–19

truncating journal files, 9–88
Journal qualifier

Oracle RMU backup, 7–71

L
Label

checking on tapes, 7–73
Leaf node, 12–19
Line index, 12–4
Lists, 12–8, 12–10
Live page, 11–22, 11–25
Loader synchronization

preloading tapes for parallel backup operation,
7–54

Loader_Synchronization qualifier
Oracle RMU backup, 7–69

Loading data
security audit journal records, 3–2, 3–22

Lock
duplicate nodes, 12–20

Locked and unlocked free space, 12–4
Locking duplicate nodes, 12–23
Locking quiet point, 7–56
Log command (RdbALTER), 6–25
Log file

incremental backup summary statistics, 7–41

Logical area thresholds
storage efficiency with data compression,

13–2
Logical name

after-image journal file, 9–9
defining RDM$BUGCHECK_DIR, A–4
defining RDMS$BIND_SORT_WORKFILES,

A–8
journal files, 9–9
recovery-unit journal, 10–2
system, 9–9

M
Maintenance

activities requiring reload, 1–15
analyze operations, 1–16
automatic cleanup activities, 1–10
availability features, 1–8
closing the database, 4–10
cluster environment automatic recovery, 1–10
disable logging for write-once storage areas,

1–10
general database activities, 1–7t
general SQL activities, 1–8t
multithreaded backup operation, 7–2
offline DBA activities, 1–14
online backup operations, 1–9
online DBA activities, 1–11
online move operations, 1–10
online recovery operations, 1–10
online restore operations, 1–10
overview, 1–3
regular activities, 1–4t
startup and shutdown activities, 1–5t
troubleshooting activities, 1–6t
verify operations, 1–16

Make Consistent command (RdbALTER), 6–23
Management functions (Oracle RMU)

privileges required to use, 3–6t
Master qualifier

Oracle RMU backup, 7–68
mf_personnel database

creating sample, 1–16

Index–10

Migrating databases
to multifile database, 8–52

Monitoring a database, 2–1
Monitor log file

RDMS_MONITOR process information, A–3
reopening, 2–7
See also Monitor process

log file
Monitor process, 2–2

attaching to a database, 2–8
changing base priority, 2–5
changing log file, 2–5
changing priority, 2–7
communicating with users, 2–8
displaying, 2–6
displaying contents, 2–6
log file

activity information, 2–10
creating new version, 2–5
displaying, 2–5, 2–6, 4–4
example, 2–8
header information, 2–11
monitor bugs, A–3
reading, 2–8
renaming, 2–5
SYS$SYSTEM:RDMMON.LOG file, A–3

priority, 2–6
recording user activity, 2–8
recovery processes, 2–7
starting, 2–2, 2–3
stopping, 2–2, 2–3

with active users, 2–5
using mailboxes, 2–8

Move command (RdbALTER), 6–17
to move database files, 6–17

Moving database files, 6–16
Multiple fixed-size journal files, 9–10
Multithreaded backup

introduction, 7–3
parallel backup, 7–4
strategies, 7–23

N
New features

Oracle RMU, xxvii
New features for Oracle Rdb, xxvii
Nodes

index, 12–19
Nolog command (RdbALTER), 6–26
NUMBER OF RECOVERY BUFFERS IS option

determining the current value, 10–7
specifying with SQL, 10–6

O
Object types

auditing, 3–9
auditing for specific privileges, 3–9

Offline backup
strategies, 7–22
when to perform, 7–22

Online backup
enabling snapshot files, 7–56
performing, 7–56
starting, 7–58
strategies, 7–22
when to perform, 7–22

Online help, xxiii
Opening a database, 4–1
OpenVMS

shadowed disks, 7–15
OpenVMS Backup utility, 7–13
OpenVMS security audit journal, 3–16

loading into database, 3–22
Optimizing after-image journaling, 9–73
Oracle Rdb Management Utility

See individual RMU command entries
Oracle Rdb new features, xxvii
Oracle RMU

privileges applied when you restore a
database, 8–2

privileges required to use, 3–6t
Oracle supercenter

submitting problem reports, A–1

Index–11

Overflow index nodes, 12–19

P
Pages

checksum, 12–3
corrupt page table, 5–21, 5–32, 9–60
data structure, 12–1
header, 12–3
number, 12–3
SPAM

See Space area management (SPAM)
pages

tail, 12–35
Parallel backup

assigning worker processes to nodes, 7–47
coordinator process, 7–5
overview, 7–4
Parallel Backup Monitor, 7–47, 7–55
performing, 7–45
plan file, 7–49
starting, 7–48
steps during processing, 7–52
strategies, 7–23
using with loader synchronization, 7–54
worker processes, 7–5

Parameters
ASTLM, 8–36
DIOLM, 8–36

Patching database corruption, 6–3
Performance

improving database automatic recovery
process, 10–6

journaling, 10–2
NUMBER OF RECOVERY BUFFERS IS

option, 10–6
optimizing after-image journaling, 9–52
optimizing the incremental backup operation,

7–37
PERSONNEL database

creating sample, 1–16
Primary segment, 12–8
Privilege

granting after an RMU Restore operation,
8–2

Privilege (cont’d)
required for accessing recovery-unit journal

file, 10–4
Process failure, 10–6
Process quotas

for Oracle RMU backup, 7–29
Protection audit events

enabling or disabling, 3–6

Q
Quiet point, 7–56
Quiet-point lock, 7–56 to 7–61

R
Radix command (RdbALTER), 6–13, 6–25
.rbf file

See Database backup (.rbf) file
RdbALTER, 6–3

Area command, 6–6
Attach command, 6–4
attaching to a database, 6–4
changing page contents, 6–12
Commit command, 6–15, 6–26
completing transactions, 6–26
Deposit command, 6–12, 6–14e, 6–15e
Detach command, 6–5, 6–27
detaching from a database, 6–5
Display command, 6–10

Area_Number, 6–10
asterisk (*), 6–10
Checksum, 6–10
Count, 6–11
Data, 6–11
Free_Space, 6–11
Header, 6–10
Index, 6–11
Line, 6–11
Locked_Free_Space, 6–11
Page_Number, 6–10
Space, 6–11
Time_Stamp, 6–10

displaying page contents, 6–10
entering, 6–4

Index–12

RdbALTER (cont’d)
Exit command, 6–27
exiting, 6–27
fetching an area, 6–6
fetching a page, 6–7
Help command, 6–27
information needed before using, 6–3
keeping an audit trail, 6–25
keeping a session log, 6–4
Log command, 6–4, 6–25
logging a session, 6–25
Make Consistent command, 6–23
Move command, 6–17

example, 6–17
moving database files, 6–16
moving data on a page, 6–17
Nolog command, 6–26
PAGE command, 6–7
Radix command, 6–13, 6–25
Rollback command, 6–26
specifying an area, 6–6
specifying a page, 6–6
stopping a session log, 6–26
Uncorrupt command, 6–5
undoing changes, 6–4
Verify command, 6–25
verifying alterations, 6–25
with RMU Verify, 6–3

RdbALTER Verify versus RMU Verify, 6–25
RDM$BUGCHECK_DIR logical name defining,

A–4
RDM$RUJ directory, 10–2
RDMMON.LOG file, 2–5, 2–6

See also Monitor process
log file

Record
clusters, 12–9
fragmentation, 12–36 to 12–41
growth, 12–8
index node, 12–18
lists, 12–10
user-stored, 12–9

Recover command
tape label checking, 7–73

Recovering a database
using after-image journal files, 9–58

Recovery, 10–1
See also Database
abnormally terminated transaction, 10–4
abnormal termination, 10–4
after-image journal files, 9–58
allocating number of DBR database buffers,

10–6
displaying the value of NUMBER OF

RECOVERY BUFFERS, 10–7
from a lost extensible journal file, 9–76
from a lost fixed-size journal file, 9–77
from an inaccessible journal file, 9–75
incomplete, 10–1
order to apply, 9–68
placement of recovery-unit journal files, 10–2
recovery-unit journals, 10–1
steps for, 9–59
strategies, 9–19
when to back up journal files, 9–22

Recovery-unit journal (.ruj) file, 10–4, 10–6
directories, 10–2
displaying contents, 10–8
file

creating and protecting, 10–4
interpreting contents, 10–8
interpreting file headings, 10–8
logical names, 10–2
missing recovery-unit journal files, 10–1

Recovery-unit journals
creating on common-access devices, 10–3
.ruj file location, 10–2

Relation
for storing security audit journal records,

3–22
Reorganizing databases

database files, 8–52
Repairing database corruption, 6–1
Reporting

notifying Oracle about problems with Oracle
Rdb software, A–1

Restore command
tape label checking, 7–73

Index–13

Restore Only_Root command
tape label checking, 7–73

Restoring
databases, 7–1

Restoring a database
with after-image journaling, 9–2

Restoring databases, 8–1
checking database version numbers, 8–13
creating duplicate database, 8–47
creating new database version, 8–9
DECnet restriction, 8–1
disabling SPAM pages, 8–44
enabling SPAM pages, 8–44
examples

no read-only storage areas, 8–13
pages, 8–18
read-only storage areas, 8–14

from tape, 8–32
full, 8–5, 8–6
granting directory ACE privileges, 8–2
granting Oracle RMU privileges, 8–2
incremental, 8–10

applying restore to correct root file
version, 8–12

modifying after-image journaling, 8–40
modifying database characteristics, 8–37
modifying database options, 8–45
modifying page size, 8–43
moving files, 8–49
Noworm attribute, 8–44
options file, 8–45
preparation, 8–1
quota-exceeded problems, 8–36
root file, 8–22
setting snapshot allocation size, 8–44
threshold values, 8–43
Worm attribute, 8–44

RMU Alter command
entering RdbALTER, 6–4

RMU Backup After_Journal command
tape label checking, 7–73

RMU Backup command
advantages of, 7–13
After_Journal, 9–20

using disk and tape media, 9–20

RMU Backup command (cont’d)
by-area backup requires file management,

7–19
calculating working set, 7–29
Checksum_Verification qualifier, 7–30
compared to EXPORT, 8–52
Crc=Autodin_ii, 7–72
Crc=Checksum, 7–73
Crc qualifier requirements, 7–72
cyclic redundancy check (crc) qualifier options,

7–72
example, 7–34
Execute qualifier, 7–46
full and complete, 7–17
full backup operation, 7–8
full versus incremental, 7–18
Incremental, 7–34e
Incremental=By_Area, 7–35
Incremental=Complete, 7–35
Journal qualifier, 7–71
List_Plan qualifier, 7–46, 7–51
Load_Synchronization qualifier, 7–69
Lock_Timeout qualifier, 7–60
Master qualifier, 7–68
multithreaded backup operation, 7–2
Noexecute qualifier, 7–49
Online qualifier, 7–58
on line versus off line, 7–22
parallel, 7–23
Parallel qualifier, 7–46
Protection qualifier, 7–13
qualifiers that select storage areas, 7–19
Quiet_Point lock qualifier, 7–59
Quiet_Point qualifier, 7–56
read/write storage areas, 7–22
read-only and write-once storage areas, 7–20
read-only storage areas, 7–21
Scan_Optimization qualifier, 7–37
tape label checking, 7–73

RMU Backup Plan command, 7–46, 7–51
RMU Close command, 4–7, 4–10e

Noabort qualifier, 4–13
terminating active users, 4–10

Index–14

RMU Dump After_Journal command, 9–77
tape label checking, 7–73

RMU Dump Backup_File command, 7–77
tape label checking, 7–73

RMU Dump command, 11–1
After_Journal, 9–77
Area qualifier, 11–1
display database characteristics, 2–16
Header, 2–16
Larea qualifier, 11–1
Recovery_Journal, 10–8
Snapshots qualifier, 11–1
to show storage area, page, and record

numbers, 6–7
users, 2–13e

RMU Dump Header command, 7–56
RMU Load Audit command, 3–2, 3–23, 3–24
RMU Monitor command, 2–2

Start, 2–3
start monitor and capture the output, 2–6
start specifying a priority, 2–6
start the monitor and display output, 2–6
Stop, 2–3, 2–6
stop and abort, 2–3

RMU Open command, 4–2e, 4–3, 4–7
Access qualifier, 4–3
Global_Buffer qualifier, 4–3
implicit, 9–88
Path qualifier, 4–3, 4–9

RMU Optimize After_Journal command, 9–73
RMU Recover command, 9–66

tape label checking, 7–73
RMU Repair command, 6–1
RMU Restore command, 8–6

After_Journal, 8–40, 8–41
Aij_Options, 8–40, 8–41
Blocks_Per_Page, 8–43
compared to IMPORT, 8–52
DECnet restriction, 8–1
Directory, 8–48, 8–49
Duplicate, 8–47
File, 8–48, 8–49
Incremental, 8–10

Root, 8–10

RMU Restore command (cont’d)
into a directory owned by a resource identifier,

8–2
New_Version, 8–9
Noafter_Journal, 8–40, 8–41
Noaij_Options, 8–40
Nocdd_Integrate, 8–51
Nospams, 8–44
Noworm, 8–44
Only_Root, 8–22
Options, 8–45
Path, 8–50
preparation, 8–1
purpose, 8–1
Snapshot=(Allocation=N), 8–44
Snapshots, 8–48, 8–49
Spams, 8–44
tape label checking, 7–73
Thresholds, 8–43
Worm, 8–44

RMU Restore Only_Root command
tape label checking, 7–73

RMU Set After_Journal command
Add, 9–76
Disable, 9–8, 9–76
Drop, 9–57
Enable, 9–5, 9–82
Notify, 9–77, 9–82
Reserve, 9–82
Shutdown_Timeout, 9–40
Switch_Journal, 9–24, 9–30, 9–71, 9–82

RMU Set Audit command, 3–2, 3–9
Enable=Daccess=Column qualifier, 3–12
Enable=Daccess=Database qualifier, 3–11
Enable=Daccess=Table qualifier, 3–11
Enable=Daccess qualifier, 3–12
Enable=Protection qualifier, 3–12
Enable=RMU qualifier, 3–12
Every qualifier, 3–14
First qualifier, 3–14
Flush qualifier, 3–14
NoFlush qualifier, 3–14
Privileges qualifier, 3–11
Start qualifier, 3–15
Type=Alarm qualifier, 3–15

Index–15

RMU Set Audit command (cont’d)
Type=Audit qualifier, 3–15

RMU Set command
Corrupt_Pages Consistent, 6–5, 6–23

RMU Set Corrupt_Pages command
set consistent flag, 6–21

RMU Set Corrupt_Pages Consistent command
clearing an inconsistent flag, 6–23
replaces RdbALTER Uncorrupt command,

6–5
RMU Show Audit command, 3–2

Audit qualifier, 3–12
Daccess=Column qualifier, 3–12
Daccess=Database qualifier, 3–11
Daccess=Table qualifier, 3–11
Every qualifier, 3–14
Flush qualifier, 3–14
Identifiers qualifier, 3–9

RMU Show command
Corrupt_Pages, 5–21, 5–32, 9–60
system, 2–11
users, 2–11, 2–12
Users qualifier, 4–3e
version, 2–11

RMU Show Corrupt_Pages command, 6–22
RMU Show Statistics command, 1–5

after-image journal backup files, 9–49
after-image journal file switcover, 9–42
after-image journaling performance, 9–5
after-image journaling realtime information,

9–44
after-image journal sequence numbers and

checkpoint numbers, 9–48
AIJ Information and Stall Messages screens,

9–41
checking for disk bottlenecks during verify

operations, 5–17
emergency after-image journal files, 9–39
submitting as a batch job, 2–14

RMU Verify command, 5–4, 5–12
All, 5–4, 5–13, 5–14
Areas, 5–14, 5–38
Checksum_only, 5–13, 5–25
Constraints, 5–15
Incremental, 5–13

RMU Verify command (cont’d)
Indexes, 5–15
Indexes [No]Data, 5–15
Larea, 5–14
Larea Segmented_Strings, 5–15
Log, 5–20
qualifier functions, 5–12
Root and Noroot, 5–14
Snapshots, 5–14
Transaction_Type, 5–20

RMU Verify versus RdbALTER Verify, 6–25
Rollback command (RdbALTER), 6–26
Rolling back a transaction

in RdbALTER, 6–26
Root file

backup information, 7–38, 7–77
corrupt page table, 5–21, 5–32, 9–60
header information, 2–16
mapping global sections, 4–1
mapping shared memory partitions, 4–1
restore information, 8–10, 8–12
unmapping global sections, 4–1
unmapping shared memory partitions, 4–1

.ruj file
See Recovery-unit journal (.ruj) file

S
Sample database, creating, 1–16
Scan_Optimization qualifier

optimizes incremental backup performance,
7–37

Search key, 12–30
Secondary segment, 12–8
Security

database recovery, 9–58
Security auditing, 3–2

alarms, 3–3, 3–17
enabling, 3–8

Audit event type, 3–4
audit journal, 3–3, 3–22

enabling, 3–8
Daccess

event type, 3–5
level security auditing, 3–8, 3–9

Index–16

Security auditing
Daccess (cont’d)

privileges for database objects, 3–10
default characteristics, 3–2
defining audit events, 3–7
displaying characteristics, 3–2
enabling and disabling events, 3–12
establishing auditing, 3–8
event-level security auditing, 3–8, 3–12
event types, 3–4
every access, 3–13
first access only, 3–13
Flush qualifier, 3–14
interpreting alarms, 3–17
interpreting Audit alarms, 3–18
interpreting Daccess alarms, 3–18
interpreting Oracle RMU alarms, 3–20
interpreting Protection alarms, 3–20
levels of security auditing, 3–7
monitoring resources, 3–4
NoFlush qualifier, 3–14
Protection event type, 3–6
reviewing Audit alarms, 3–18
reviewing audit information, 3–16
reviewing audit journal, 3–24
reviewing audit journal records, 3–24
reviewing Daccess alarms, 3–18
reviewing Oracle RMU alarms, 3–20
reviewing Protection alarms, 3–20
RMU event type, 3–6
setting alarms, 3–13
setting Daccess events, 3–9
setting record auditing, 3–13
setting user-level events, 3–9
starting and stopping, 3–8, 3–13
strategy for defining security auditing, 3–7
top-level security auditing, 3–8, 3–13
use of the RMU Load Audit command, 3–22
user-level security auditing, 3–7, 3–9

Security audit journal records
defining database table for storing, 3–22
defining relation for storing, 3–22
loading into database, 3–22

Show System command (RMU), 2–7, 2–12
Show Users command (RMU), 2–11
Show Versions command (RMU), 2–11
Snap page, 11–25
Snapshot (.snp) file

data structures, 11–25
display, 11–18

Snapshot files
enabling for online backup operations, 7–56

Sorted index, 12–20
non-ranked, 12–19, 12–20

index node segment, 12–20
ranked, 12–19, 12–23

index node segment, 12–23
Space area management (SPAM) pages

controlling thresholds, 13–17
defaults, 13–12
defining, 13–12
defining intervals, 13–17
entries, 13–1
entry information, 13–19t
examined during incremental backup, 7–38
format, 13–7, 13–12
fullness threshold, 13–17
mixed page format, 13–12e
page interval, 13–1
sample scenario, 13–17e
SPAM interval

formula for uniform storage area, 13–5
structure, 13–1
threshold value, 13–5
uniform page format, 13–4, 13–5e

SPAM page
See Space area management (SPAM) pages

SQL EXPORT statement, 8–52
SQL IMPORT statement, 8–52
Starting security auditing, 3–8, 3–13
Stopping security auditing, 3–8, 3–13
Storage area

backup strategies, 7–19
mixed page format, 11–6
requirements of journal files, 9–88
specifying for back up operations, 7–44
structures, 12–1
uniform page format, 11–3

Index–17

Storage records
frag flags, 12–9
identification, 12–9
record pointer, 12–9
structure, 12–9, 12–10

Storage segment
fragmented, 12–8, 12–37
length, 12–5
storage record header, 12–8
structure, 12–8

Summary statistics
incremental backup operation, 7–41

Switching journal files, 9–35
avoiding switchover suspension, 9–36

Switchover, 9–35
SYS$SYSTEM logical name, 2–5
SYSHUTDWN.COM command procedure, 2–2
SYSTARTUP.COM command procedure, 2–2,

2–6
System failure, 10–6

checking database for corruption, 5–20
verifying database integrity, 5–2

SYSTEM record
hashed index structure, 12–28

T
Tape

checking labels, 7–73
incremental backup command, 7–36
monitor error rates, 7–76
optimizing utilization, 7–71
preloading, 7–69

Tape backups
guidelines, 7–62
recommendations for after-image journal file

backup, 9–20
underrun errors, 7–71

Tape device
backing up after-images, 9–20
reusing for after-image backup, 9–21

Tape label checking, 7–73
Thresholds

fullness, 13–1

Timestamp
by-area backup operation, 7–41
changes, 12–3
full database restore operation, 8–5
incremental backup operation, 7–38
incremental restore operation, 8–10
page header, 12–3

Transaction
abnormal termination, 10–4
journaling, 9–1
locked free space, 12–4
normal completion, 10–4
recovering, 9–66
update, 10–4

abnormal termination, 10–4
exception using invalid dbkey, A–9

Transaction identification number (TID), 12–6
Transaction sequence number (TSN), 12–5

after-image journaling, 9–80
index, 12–5
used for incremental backup, 7–38

TSN
See Transaction sequence number (TSN)

U
Uncorrupt command (RdbALTER), 6–5
Underrun errors

avoiding, 7–71
Update transaction, 10–4

abnormal termination, 10–4
User information, displaying, 2–12
Users

listing active, 2–12
terminating active, 4–7, 4–10
verifying active, 4–13

User-stored data storage segments, 12–8
User-stored record, 12–9
Using the RMU Dump Area command, 11–8,

11–9
Using the RMU Dump Larea=RDB$AIP

command, 11–15
Using the RMU Dump Larea command, 11–13

Index–18

Using the RMU Dump Snapshot command,
11–18

compare with live page, 11–22e

V
Verification

databases prior to backup using the
Checksum_Verification qualifier, 7–31

Verify command
checking constraints, 5–9
constraints, 9–85

Verify command (RdbALTER), 6–25
Verifying

checking constraint definitions, 5–4, 5–7
constraints on a restored database, 9–85
violating a constraint definition, 5–3

Verifying database integrity, 5–4, 5–25
after alterations in RdbALTER, 6–25
after system failure, 5–20
after using RdbALTER, 6–15

database page checking, 5–19
effects on other users, 5–4
frequency to perform, 5–4
full, 5–4
restrictions on ready mode, 5–4
specific areas of the database, 5–38

W
Worker processes, 7–5
Working set

calculating for Oracle RMU backup, 7–29
WORM optical media

journaling considerations, 9–16
omitting both backup and journaling

operations, 9–17
performing backups but omitting journaling

operations, 9–17
performing journaling but omitting backup

operations, 9–18

Index–19

